NewsWorld
PredictionsDigestsScorecardTimelinesArticles
NewsWorld
HomePredictionsDigestsScorecardTimelinesArticlesWorldTechnologyPoliticsBusiness
AI-powered predictive news aggregation© 2026 NewsWorld. All rights reserved.
Trending
ProgramsHealthCampaignFireSafetyAnnounceZmirPublicTimelineRefundCrisisDiplomaticEmergencyElectionHealthcareLiberalConservativesMilitaryInternationalNuclearMinisterDeathStudentsLaunch
ProgramsHealthCampaignFireSafetyAnnounceZmirPublicTimelineRefundCrisisDiplomaticEmergencyElectionHealthcareLiberalConservativesMilitaryInternationalNuclearMinisterDeathStudentsLaunch
All Articles
Oxygen metabolism in descendants of the archaeal-eukaryotic ancestor
Nature News
Published 4 days ago

Oxygen metabolism in descendants of the archaeal-eukaryotic ancestor

Nature News · Feb 18, 2026 · Collected from RSS

Full Article

Vosseberg, J. et al. The emerging view on the origin and early evolution of eukaryotic cells. Nature 633, 295–305 (2024).Article ADS CAS PubMed Google Scholar Eme, L. et al. Inference and reconstruction of the heimdallarchaeial ancestry of eukaryotes. Nature 618, 992–999 (2023).Article ADS CAS PubMed PubMed Central Google Scholar Spang, A. et al. Proposal of the reverse flow model for the origin of the eukaryotic cell based on comparative analyses of Asgard archaeal metabolism. Nat. Microbiol. 4, 1138–1148 (2019).Article CAS PubMed Google Scholar Tamarit, D. et al. Description of Asgardarchaeum abyssi gen. nov. spec. nov., a novel species within the class Asgardarchaeia and phylum Asgardarchaeota in accordance with the SeqCode. Syst. Appl. Microbiol. 47, 126525 (2024).Article CAS PubMed Google Scholar Spang, A. et al. Complex archaea that bridge the gap between prokaryotes and eukaryotes. Nature 521, 173–179 (2015).Article ADS CAS PubMed PubMed Central Google Scholar Zaremba-Niedzwiedzka, K. et al. Asgard archaea illuminate the origin of eukaryotic cellular complexity. Nature 541, 353–358 (2017).Article ADS CAS PubMed Google Scholar Martin, W. & Müller, M. The hydrogen hypothesis for the first eukaryote. Nature 392, 37–41 (1998).Article ADS CAS PubMed Google Scholar López-García, P. & Moreira, D. The Syntrophy hypothesis for the origin of eukaryotes revisited. Nat. Microbiol. 5, 655–667 (2020).Article PubMed Google Scholar Moreira, D. & Lopez-Garcia, P. Symbiosis between methanogenic archaea and delta-proteobacteria as the origin of eukaryotes: the syntrophic hypothesis. J. Mol. Evol. 47, 517–530 (1998).Article ADS CAS PubMed Google Scholar Imachi, H. et al. Isolation of an archaeon at the prokaryote-eukaryote interface. Nature 577, 519–525 (2020).Article ADS CAS PubMed PubMed Central Google Scholar Rodrigues-Oliveira, T. et al. Actin cytoskeleton and complex cell architecture in an Asgard archaeon. Nature 613, 332–339 (2023).Article ADS CAS PubMed Google Scholar Imachi, H. et al. Eukaryotes’ closest relatives are internally simple syntrophic archaea. Preprint at bioRxiv https://doi.org/10.1101/2025.02.26.640444 (2025).Zhang, J. et al. Deep origin of eukaryotes outside Heimdallarchaeia within Asgardarchaeota. Nature 642, 990–998 (2025).Article ADS CAS PubMed PubMed Central Google Scholar Mahendrarajah, T. A. et al. ATP synthase evolution on a cross-braced dated tree of life. Nat. Commun. 14, 7456 (2023).Article ADS PubMed PubMed Central Google Scholar Martijn, J., Vosseberg, J., Guy, L., Offre, P. & Ettema, T. J. G. Deep mitochondrial origin outside the sampled alphaproteobacteria. Nature 557, 101–105 (2018).Article ADS CAS PubMed Google Scholar Muñoz-Gómez, S. A. et al. Site-and-branch-heterogeneous analyses of an expanded dataset favour mitochondria as sister to known Alphaproteobacteria. Nat. Ecol. Evol. 6, 253–262 (2022).Article PubMed Google Scholar Lyons, T. W., Reinhard, C. T. & Planavsky, N. J. The rise of oxygen in Earth’s early ocean and atmosphere. Nature 506, 307–315 (2014).Article ADS CAS PubMed Google Scholar Lyons, T. W., Diamond, C. W., Planavsky, N. J., Reinhard, C. T. & Li, C. Oxygenation, life, and the planetary system during earth’s middle history: an overview. Astrobiology 21, 906–923 (2021).Article ADS PubMed PubMed Central Google Scholar Bulzu, P.-A. et al. Casting light on Asgardarchaeota metabolism in a sunlit microoxic niche. Nat. Microbiol. 4, 1129–1137 (2019).Article CAS PubMed Google Scholar Liu, Y. et al. Expanded diversity of Asgard archaea and their relationships with eukaryotes. Nature 593, 553–557 (2021).Article ADS CAS PubMed PubMed Central Google Scholar Muñoz-Gómez, S. A. Energetics and evolution of anaerobic microbial eukaryotes. Nat. Microbiol. 8, 197–203 (2023).Article PubMed Google Scholar Sousa, F. L., Neukirchen, S., Allen, J. F., Lane, N. & Martin, W. F. Lokiarchaeon is hydrogen dependent. Nat. Microbiol. 1, 16034 (2016).Article CAS PubMed Google Scholar Dombrowski, N., Teske, A. P. & Baker, B. J. Expansive microbial metabolic versatility and biodiversity in dynamic Guaymas Basin hydrothermal sediments. Nat. Commun. 9, 4999 (2018).Article ADS PubMed PubMed Central Google Scholar Li, M. et al. Active bacterial and archaeal communities in coastal sediments: Biogeography pattern, assembly process and co-occurrence relationship. Sci. Total Environ. 750, 142252 (2021).Article CAS PubMed Google Scholar Guo, X., Li, Y., Song, G., Zhao, L. & Wang, J. Adaptation of Archaeal communities to summer hypoxia in the sediment of Bohai Sea. Ecol. Evol. 15, e70768 (2025).Article PubMed PubMed Central Google Scholar Gong, X. et al. New globally distributed bacterial phyla within the FCB superphylum. Nat. Commun. 13, 7516 (2022).Article ADS CAS PubMed PubMed Central Google Scholar Langwig, M. V. et al. Large-scale protein level comparison of Deltaproteobacteria reveals cohesive metabolic groups. ISME J. 16, 307–320 (2021).Article PubMed PubMed Central Google Scholar Gong, X. et al. Contrasting archaeal and bacterial community assembly processes and the importance of rare taxa along a depth gradient in shallow coastal sediments. Sci. Total Environ. 852, 158411 (2022).Article CAS PubMed Google Scholar Köstlbacher, S. et al. Prediction of eukaryotic cellular complexity in Asgard archaea using structural modelling. Nat. Microbiol. https://doi.org/10.1038/s41564-026-02273-y (2026).Williams, T. A., Cox, C. J., Foster, P. G., Szöllősi, G. J. & Embley, T. M. Phylogenomics provides robust support for a two-domains tree of life. Nat. Ecol. Evol. 4, 138–147 (2020).Article PubMed Google Scholar Tully, B. J., Graham, E. D. & Heidelberg, J. F. The reconstruction of 2,631 draft metagenome-assembled genomes from the global oceans. Sci. Data 5, 170203 (2018).Article CAS PubMed PubMed Central Google Scholar Rodriguez-R, L. M., Tsementzi, D., Luo, C. & Konstantinidis, K. T. Iterative subtractive binning of freshwater chronoseries metagenomes identifies over 400 novel species and their ecologic preferences. Environ. Microbiol. 22, 3394–3412 (2020).Article CAS PubMed Google Scholar Glasl, B. et al. Comparative genome-centric analysis reveals seasonal variation in the function of coral reef microbiomes. ISME J. 14, 1435–1450 (2020).Article PubMed PubMed Central Google Scholar Rezaei Somee, M. et al. Distinct microbial community along the chronic oil pollution continuum of the Persian Gulf converge with oil spill accidents. Sci. Rep. 11, 11316 (2021).Article ADS CAS PubMed PubMed Central Google Scholar Barnum, T. P. et al. Predicting microbial growth conditions from amino acid composition. Preprint at bioRxiv https://doi.org/10.1101/2024.03.22.586313 (2024).Gawryluk, R. M. R. & Stairs, C. W. Diversity of electron transport chains in anaerobic protists. Biochim. Biophys. Acta, Bioenerg. 1862, 148334 (2021).Article CAS PubMed Google Scholar Stairs, C. W. et al. Chlamydial contribution to anaerobic metabolism during eukaryotic evolution. Sci. Adv. 6, eabb7258 (2020).Article ADS CAS PubMed PubMed Central Google Scholar Geiger, O., Sanchez-Flores, A., Padilla-Gomez, J. & Degli Esposti, M. Multiple approaches of cellular metabolism define the bacterial ancestry of mitochondria. Sci. Adv. 9, eadh0066 (2023).Article CAS PubMed PubMed Central Google Scholar Mills, D. B. et al. Eukaryogenesis and oxygen in Earth history. Nat. Ecol. Evol. 6, 520–532 (2022).Article PubMed Google Scholar Woodcroft, B. J. et al. Comprehensive taxonomic identification of microbial species in metagenomic data using SingleM and Sandpiper. Nat. Biotechnol. https://doi.org/10.1038/s41587-025-02738-1 (2025).Article PubMed Google Scholar Yu, H., Schut, G. J., Haja, D. K., Adams, M. W. W. & Li, H. Evolution of complex I-like respiratory complexes. J. Biol. Chem. 296, 100740 (2021).Article CAS PubMed PubMed Central Google Scholar Greening, C. et al. Minimal and hybrid hydrogenases are active from archaea. Cell 187, 3357–3372.e19 (2024).Article CAS PubMed PubMed Central Google Scholar Valentin-Alvarado, L. E. et al. Asgard archaea modulate potential methanogenesis substrates in wetland soil. Nat. Commun. 15, 6384 (2024).Article ADS CAS PubMed PubMed Central Google Scholar Yu, H. et al. Structure of an ancient respiratory system. Cell 173, 1636–1649.e16 (2018).Article CAS PubMed PubMed Central Google Scholar Zhu, J., Vinothkumar, K. R. & Hirst, J. Structure of mammalian respiratory complex I. Nature 536, 354–358 (2016).Article ADS CAS PubMed PubMed Central Google Scholar Baradaran, R., Berrisford, J. M., Minhas, G. S. & Sazanov, L. A. Crystal structure of the entire respiratory complex I. Nature 494, 443–448 (2013).Article ADS CAS PubMed PubMed Central Google Scholar Schuller, J. M. et al. Structural adaptations of photosynthetic complex I enable ferredoxin-dependent electron transfer. Science 363, 257–260 (2019).Article ADS CAS PubMed Google Scholar Kravchuk, V. et al. A universal coupling mechanism of respiratory complex I. Nature 609, 808–814 (2022).Article ADS CAS PubMed Google Scholar Chadwick, G. L., Hemp, J., Fischer, W. W. & Orphan, V. J. Convergent evolution of unusual complex I homologs with increased proton pumping capacity: energetic and ecological implications. ISME J. 12, 2668–2680 (2018).Article CAS PubMed PubMed Central Google Scholar Rinke, C. et al. A phylogenomic and ecological analysis of the globally abundant Marine Group II archaea (Ca. Poseidoniales ord. nov.). ISME J. 13, 663–675 (2019).Article CAS PubMed Google Scholar Banci, L., Bertini, I., Cavallaro, G. & Rosato, A. The functions of Sco proteins from genome-based analysis. J. Proteome Res. 6, 1568–1579 (2007).Article CAS PubMed Google Scholar Gribaldo, S., Talla, E. & Brochier-Armanet, C. Evolution of the haem copper oxidases superfamily: a rooting tale. Trends Biochem. Sci. 34, 375–381 (2009).Article CAS PubMed Google Scholar Alcott, L. J., Mills, B. J. W., Bekker, A. & Poulton, S. W. Earth’s Great Oxidation Event facilitated by the rise of sedimentary phosphorus recycli


Share this story

Read Original at Nature News

Related Articles

Nature News2 days ago
Gel helps mini spinal cords to heal from injury
Nature News2 days ago
Why do curling stones slide across ice the way they do?
Nature News2 days ago
AI is threatening science jobs. Which ones are most at risk?
Nature News2 days ago
Are obesity drugs causing a severe complication? What the science says
Nature News2 days ago
Runaway black hole leaves a trail of stars
Nature News2 days ago
Briefing chat: How hovering bumblebees keep their cool