Nature News · Feb 11, 2026 · Collected from RSS
Data availabilityAll processed fluorescence, behavioural and fibre localization data have been deposited at Zenodo65 (https://doi.org/10.5281/zenodo.17653000). Additional data are available on reasonable request from the corresponding author.Code availability All code used in this study for key analyses was written in MATLAB or Python and is available at Zenodo65 (https://doi.org/10.5281/zenodo.17653000). ReferencesSchultz, W., Dayan, P. & Montague, P. R. A neural substrate of prediction and reward. Science 275, 1593–1599 (1997).Article CAS PubMed Google Scholar Schultz, W. Multiple dopamine functions at different time courses. Annu. Rev. Neurosci. 30, 259–288 (2007).Article CAS PubMed Google Scholar Berridge, K. C. The debate over dopamine’s role in reward: the case for incentive salience. Psychopharmacology 191, 391–431 (2007).Article CAS PubMed Google Scholar Wise, R. A. Dopamine, learning and motivation. Nat. Rev. Neurosci. 5, 483–494 (2004).Article CAS PubMed Google Scholar Chersi, F. & Burgess, N. The cognitive architecture of spatial navigation: hippocampal and striatal contributions. Neuron 88, 64–77 (2015).Article CAS PubMed Google Scholar Joel, D., Niv, Y. & Ruppin, E. Actor–critic models of the basal ganglia: new anatomical and computational perspectives. Neural Netw. 15, 535–547 (2002).Article PubMed Google Scholar Montague, P., Dayan, P. & Sejnowski, T. A framework for mesencephalic dopamine systems based on predictive Hebbian learning. J. Neurosci. 16, 1936–1947 (1996).Article CAS PubMed PubMed Central Google Scholar Tobler, P. N., Fiorillo, C. D. & Schultz, W. Adaptive coding of reward value by dopamine neurons. Science 307, 1642–1645 (2005).Article CAS PubMed ADS Google Scholar Fiorillo, C. D., Tobler, P. N. & Schultz, W. Discrete coding of reward probability and uncertainty by dopamine neurons. Science 299, 1898–1902 (2003).Article CAS PubMed ADS Google Scholar Gerfen, C. R. & Surmeier, D. J. Modulation of striatal projection systems by dopamine. Annu. Rev. Neurosci. 34, 441–466 (2011).Article CAS PubMed PubMed Central Google Scholar Saunders, B. T., Richard, J. M., Margolis, E. B. & Janak, P. H. Dopamine neurons create Pavlovian conditioned stimuli with circuit-defined motivational properties. Nat. Neurosci. 21, 1072–1083 (2018).Article CAS PubMed PubMed Central Google Scholar Lee, R. S., Sagiv, Y., Engelhard, B., Witten, I. B. & Daw, N. D. A feature-specific prediction error model explains dopaminergic heterogeneity. Nat. Neurosci. https://doi.org/10.1038/s41593-024-01689-1 (2024).Gershman, S. J. & Daw, N. D. Reinforcement learning and episodic memory in humans and animals: an integrative framework. Annu. Rev. Psychol. 68, 101–128 (2017).Article PubMed Google Scholar Hamid, A. A. et al. Mesolimbic dopamine signals the value of work. Nat. Neurosci. 19, 117–126 (2016).Article CAS PubMed Google Scholar Howe, M. W., Tierney, P. L., Sandberg, S. G., Phillips, P. E. M. & Graybiel, A. M. Prolonged dopamine signalling in striatum signals proximity and value of distant rewards. Nature 500, 575–579 (2013).Article CAS PubMed PubMed Central ADS Google Scholar Kim, H. R. et al. A unified framework for dopamine signals across timescales. Cell 183, 1600–1616 (2020).Article CAS PubMed PubMed Central Google Scholar Krausz, T. A. et al. Dual credit assignment processes underlie dopamine signals in a complex spatial environment. Neuron 111, 3465–3478 (2023).Article CAS PubMed PubMed Central Google Scholar Farrell, K., Lak, A. & Saleem, A. B. Midbrain dopamine neurons signal phasic and ramping reward prediction error during goal-directed navigation. Cell Rep. 41, 111470 (2022).Article CAS PubMed PubMed Central Google Scholar Engelhard, B. et al. Specialized coding of sensory, motor and cognitive variables in VTA dopamine neurons. Nature 570, 509–513 (2019).Article CAS PubMed PubMed Central ADS Google Scholar Dabney, W. et al. A distributional code for value in dopamine-based reinforcement learning. Nature 577, 671–675 (2020).Article CAS PubMed PubMed Central ADS Google Scholar Sousa, M. et al. A multidimensional distributional map of future reward in dopamine neurons. Nature 642, 691–699 (2025).Article CAS PubMed ADS Google Scholar Masset, P. et al. Multi-timescale reinforcement learning in the brain. Nature 642, 682–690 (2025).Article CAS PubMed ADS Google Scholar Dombeck, D. A., Harvey, C. D., Tian, L., Looger, L. L. & Tank, D. W. Functional imaging of hippocampal place cells at cellular resolution during virtual navigation. Nat. Neurosci. 13, 1433–1440 (2010).Article CAS PubMed PubMed Central Google Scholar Collins, A. L. & Saunders, B. T. Heterogeneity in striatal dopamine circuits: form and function in dynamic reward seeking. J. Neurosci. Res. 98, 1046–1069 (2020).Article CAS PubMed PubMed Central Google Scholar Vu, M.-A. T. et al. Targeted micro-fiber arrays for measuring and manipulating localized multi-scale neural dynamics over large, deep brain volumes during behavior. Neuron 112, 909–923 (2024).Article CAS PubMed PubMed Central Google Scholar Patriarchi, T. et al. Ultrafast neuronal imaging of dopamine dynamics with designed genetically encoded sensors. Science 360, eaat4422 (2018).Article PubMed PubMed Central Google Scholar Mohebi, A., Wei, W., Pelattini, L., Kim, K. & Berke, J. D. Dopamine transients follow a striatal gradient of reward time horizons. Nat. Neurosci. 27, 737–746 (2024).Article CAS PubMed PubMed Central Google Scholar Jørgensen, S. H. et al. Behavioral encoding across timescales by region-specific dopamine dynamics. Proc. Natl Acad. Sci. USA 120, e2215230120 (2023).Article PubMed PubMed Central Google Scholar Morris, G., Nevet, A., Arkadir, D., Vaadia, E. & Bergman, H. Midbrain dopamine neurons encode decisions for future action. Nat. Neurosci. 9, 1057–1063 (2006).Article CAS PubMed Google Scholar Howe, M. W. & Dombeck, D. A. Rapid signalling in distinct dopaminergic axons during locomotion and reward. Nature 535, 505–510 (2016).Article CAS PubMed PubMed Central ADS Google Scholar Dodson, P. D. et al. Representation of spontaneous movement by dopaminergic neurons is cell-type selective and disrupted in parkinsonism. Proc. Natl Acad. Sci. USA 113, E2180–E2188 (2016).Article CAS PubMed PubMed Central Google Scholar Da Silva, J. A., Tecuapetla, F., Paixão, V. & Costa, R. M. Dopamine neuron activity before action initiation gates and invigorates future movements. Nature 554, 244–248 (2018).Article PubMed ADS Google Scholar Sutton, R. S. Learning to predict by the methods of temporal differences. Mach. Learn. 3, 9–44 (1988).Article ADS Google Scholar Lindsay, G. W., Rigotti, M., Warden, M. R., Miller, E. K. & Fusi, S. Hebbian learning in a random network captures selectivity properties of the prefrontal cortex. J. Neurosci. 37, 11021–11036 (2017).Article CAS PubMed PubMed Central Google Scholar Roy, N. A., Bak, J. H., Akrami, A., Brody, C. D. & Pillow, J. W. Extracting the dynamics of behavior in sensory decision-making experiments. Neuron 109, 597–610 (2021).Article CAS PubMed PubMed Central Google Scholar Graybiel, A. M. Habits, rituals, and the evaluative brain. Annu. Rev. Neurosci. 31, 359–387 (2008).Article CAS PubMed Google Scholar Yin, H. H. & Knowlton, B. J. The role of the basal ganglia in habit formation. Nat. Rev. Neurosci. 7, 464–476 (2006).Article CAS PubMed Google Scholar Shadmehr, R., Smith, M. A. & Krakauer, J. W. Error correction, sensory prediction, and adaptation in motor control. Annu. Rev. Neurosci. 33, 89–108 (2010).Article CAS PubMed Google Scholar Gadagkar, V. et al. Dopamine neurons encode performance error in singing birds. Science 354, 1278–1282 (2016).Article CAS PubMed PubMed Central ADS Google Scholar Greenstreet, F. et al. Dopaminergic action prediction errors serve as a value-free teaching signal. Nature https://doi.org/10.1038/s41586-025-09008-9 (2025).Green, J. et al. A cell-type-specific error-correction signal in the posterior parietal cortex. Nature 620, 366–373 (2023).Article CAS PubMed PubMed Central ADS Google Scholar He, Q., Liu, J. L., Eschapasse, L., Beveridge, E. H. & Brown, T. I. A comparison of reinforcement learning models of human spatial navigation. Sci. Rep. 12, 13923 (2022).Article CAS PubMed PubMed Central ADS Google Scholar Foster, D. J., Morris, R. G. & Dayan, P. A model of hippocampally dependent navigation, using the temporal difference learning rule. Hippocampus 10, 1–16 (2000).Article CAS PubMed Google Scholar Watabe-Uchida, M., Zhu, L., Ogawa, S. K., Vamanrao, A. & Uchida, N. Whole-brain mapping of direct inputs to midbrain dopamine neurons. Neuron 74, 858–873 (2012).Article CAS PubMed Google Scholar Jeong, H. et al. Mesolimbic dopamine release conveys causal associations. Science 378, eabq6740 (2022).Article CAS PubMed PubMed Central Google Scholar Matsumoto, M. & Hikosaka, O. Two types of dopamine neuron distinctly convey positive and negative motivational signals. Nature 459, 837–841 (2009).Article CAS PubMed PubMed Central ADS Google Scholar Matsuda, W. et al. Single nigrostriatal dopaminergic neurons form widely spread and highly dense axonal arborizations in the neostriatum. J. Neurosci. 29, 444–453 (2009).Article CAS PubMed PubMed Central Google Scholar Menegas, W., Babayan, B. M., Uchida, N. & Watabe-Uchida, M. Opposite initialization to novel cues in dopamine signaling in ventral and posterior striatum in mice. eLife 6, e21886 (2017).Article PubMed PubMed Central Google Scholar Lerner, T. N. et al. Intact-brain analyses reveal distinct information carried by SNc dopamine subcircuits. Cell 162, 635–647 (2015).Article CAS PubMed PubMed Central Google Scholar De Jong, J. W. et al. A neural circuit mechanism for encoding aversive stimuli in the mesolimbic dopamine system. Neuron 101, 133–151 (2019).Article PubMed Google Scholar Van Elzelingen, W. et al. A unidirectional but not uniform striatal landscape of dopamine signaling for motivational stimuli. Proc. Natl Acad. Sci. USA 119, e2117270119 (2022).Article PubMed PubMed C