Nature News · Feb 11, 2026 · Collected from RSS
Data availability The raw data measured on the device presented in this work are available at https://doi.org/10.4121/227fd419-fded-4a96-ab62-421a0cd57fa5 (ref. 51). Code availability The data processing and plotting code and the code used for the theory calculations are available at https://doi.org/10.4121/227fd419-fded-4a96-ab62-421a0cd57fa5 (ref. 51). ReferencesKitaev, A. Y. Unpaired Majorana fermions in quantum wires. Phys.-Uspekhi 44, 131 (2001).Article ADS Google Scholar Sau, J. D. & Sarma, S. D. Realizing a robust practical Majorana chain in a quantum-dot-superconductor linear array. Nat. Commun. 3, 964 (2012).Article ADS PubMed Google Scholar Leijnse, M. & Flensberg, K. Parity qubits and poor man’s Majorana bound states in double quantum dots. Phys. Rev. B 86, 134528 (2012).Article ADS Google Scholar Dvir, T. et al. Realization of a minimal Kitaev chain in coupled quantum dots. Nature 614, 445–450 (2023).Article ADS CAS PubMed Google Scholar ten Haaf, S. L. et al. A two-site Kitaev chain in a two-dimensional electron gas. Nature 630, 329–334 (2024).Article ADS PubMed Google Scholar Kitaev, A. Y. Fault-tolerant quantum computation by anyons. Ann. Phys. 303, 2–30 (2003).Article ADS MathSciNet CAS Google Scholar Nayak, C., Simon, S. H., Stern, A., Freedman, M. & Das Sarma, S. Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008).Article ADS MathSciNet CAS Google Scholar Sarma, S. D., Freedman, M. & Nayak, C. Majorana zero modes and topological quantum computation. npj Quantum Inf. 1, 15001 (2015).Article ADS Google Scholar Liu, C.-X., Pan, H., Setiawan, F., Wimmer, M. & Sau, J. D. Fusion protocol for Majorana modes in coupled quantum dots. Phys. Rev. B 108, 085437 (2023).Article ADS CAS Google Scholar Boross, P. & Pályi, A. Braiding-based quantum control of a Majorana qubit built from quantum dots. Phys. Rev. B 109, 125410 (2024).Article ADS CAS Google Scholar Tsintzis, A., Souto, R. S., Flensberg, K., Danon, J. & Leijnse, M. Majorana qubits and non-Abelian physics in quantum dot–based minimal Kitaev chains. PRX Quantum 5, 010323 (2024).Article ADS Google Scholar Seoane Souto, R. & Aguado, R. in New Trends and Platforms for Quantum Technologies 133–223 (Springer, 2024).Bonderson, P., Freedman, M. & Nayak, C. Measurement-only topological quantum computation. Phys. Rev. Lett. 101, 010501 (2008).Article ADS MathSciNet PubMed Google Scholar Vijay, S. & Fu, L. Teleportation-based quantum information processing with Majorana zero modes. Phys. Rev. B 94, 235446 (2016).Article ADS Google Scholar Plugge, S., Rasmussen, A., Egger, R. & Flensberg, K. Majorana box qubits. New J. Phys. 19, 012001 (2017).Article ADS Google Scholar Sau, J. D. & Das Sarma, S. Capacitance-based fermion parity readout and predicted Rabi oscillations in a Majorana nanowire. Phys. Rev. B 111, 224509 (2025).Article ADS CAS Google Scholar Ménard, G. C. et al. Suppressing quasiparticle poisoning with a voltage-controlled filter. Phys. Rev. B 100, 165307 (2019).Article ADS Google Scholar Sabonis, D. et al. Dispersive sensing in hybrid InAs/Al nanowires. Appl. Phys. Lett. 115, 102601 (2019).Article ADS Google Scholar De Jong, D. et al. Controllable single Cooper pair splitting in hybrid quantum dot systems. Phys. Rev. Lett. 131, 157001 (2023).Article ADS PubMed Google Scholar Hays, M. et al. Direct microwave measurement of Andreev-bound-state dynamics in a semiconductor-nanowire Josephson junction. Phys. Rev. Lett. 121, 047001 (2018).Article ADS CAS PubMed Google Scholar Bargerbos, A. et al. Singlet-doublet transitions of a quantum dot Josephson junction detected in a transmon circuit. PRX Quantum 3, 030311 (2022).Article ADS Google Scholar Hinderling, M. et al. Flip-chip-based fast inductive parity readout of a planar superconducting island. PRX Quantum 5, 030337 (2024).Article ADS Google Scholar Aghaee, M. et al. Interferometric single-shot parity measurement in InAs–Al hybrid devices. Nature 638, 651–655 (2025).Article ADS PubMed PubMed Central Google Scholar Aghaee, M. et al. Distinct lifetimes for X and Z loop measurements in a Majorana tetron device. Preprint at https://arxiv.org/abs/2507.08795 (2025).Rainis, D. & Loss, D. Majorana qubit decoherence by quasiparticle poisoning. Phys. Rev. B 85, 174533 (2012).Article ADS Google Scholar Aumentado, J., Keller, M. W., Martinis, J. M. & Devoret, M. H. Nonequilibrium quasiparticles and 2e periodicity in single-Cooper-pair transistors. Phys. Rev. Lett. 92, 066802 (2004).Article ADS CAS PubMed Google Scholar Catelani, G., Schoelkopf, R. J., Devoret, M. H. & Glazman, L. I. Relaxation and frequency shifts induced by quasiparticles in superconducting qubits. Phys. Rev. B 84, 064517 (2011).Article ADS Google Scholar Karzig, T., Cole, W. S. & Pikulin, D. I. Quasiparticle poisoning of Majorana qubits. Phys. Rev. Lett. 126, 057702 (2021).Article ADS MathSciNet CAS PubMed Google Scholar Contamin, L. C., Delbecq, M. R., Douçot, B., Cottet, A. & Kontos, T. Hybrid light-matter networks of Majorana zero modes. npj Quantum Inf. 7, 171 (2021).Article ADS Google Scholar Colless, J. et al. Dispersive readout of a few-electron double quantum dot with fast rf gate sensors. Phys. Rev. Lett. 110, 046805 (2013).Article ADS CAS PubMed Google Scholar De Jong, D. et al. Rapid detection of coherent tunneling in an InAs nanowire quantum dot through dispersive gate sensing. Phys. Rev. Appl. 11, 044061 (2019).Article ADS Google Scholar Vigneau, F. et al. Probing quantum devices with radio-frequency reflectometry. Appl. Phys. Rev. 10, 021305 (2023).Article ADS CAS Google Scholar Badawy, G. et al. High mobility stemless InSb nanowires. Nano Lett. 19, 3575–3582 (2019).Article ADS CAS PubMed Google Scholar Persson, F., Wilson, C., Sandberg, M., Johansson, G. & Delsing, P. Excess dissipation in a single-electron box: the Sisyphus resistance. Nano Lett. 10, 953–957 (2010).Article ADS CAS PubMed Google Scholar Bruhat, L. et al. Cavity photons as a probe for charge relaxation resistance and photon emission in a quantum dot coupled to normal and superconducting continua. Phys. Rev. X 6, 021014 (2016). Google Scholar van Driel, D. et al. Charge sensing the parity of an Andreev molecule. PRX Quantum 5, 020301 (2024).Article Google Scholar Petta, J. R., Johnson, A. C., Marcus, C. M., Hanson, M. P. & Gossard, A. C. Manipulation of a single charge in a double quantum dot. Phys. Rev. Lett. 93, 186802 (2004).Article ADS CAS PubMed Google Scholar Nguyen, H. Q. et al. Electrostatic control of quasiparticle poisoning in a hybrid semiconductor-superconductor island. Phys. Rev. B 108, L041302 (2023).Article ADS CAS Google Scholar Bordin, A. et al. Probing Majorana localization of a phase-controlled three-site Kitaev chain with an additional quantum dot. Preprint at https://arxiv.org/abs/2504.13702 (2025).Luethi, M., Legg, H. F., Loss, D. & Klinovaja, J. From perfect to imperfect poor man’s Majoranas in minimal Kitaev chains. Phys. Rev. B 110, 245412 (2024).Article ADS CAS Google Scholar Pan, H., Das Sarma, S. & Liu, C.-X. Rabi and Ramsey oscillations of a Majorana qubit in a quantum dot-superconductor array. Phys. Rev. B 111, 075416 (2025).Article ADS CAS Google Scholar Wesdorp, J. et al. Dynamical polarization of the fermion parity in a nanowire Josephson junction. Phys. Rev. Lett. 131, 117001 (2023).Article ADS CAS PubMed Google Scholar Heedt, S. et al. Shadow-wall lithography of ballistic superconductor–semiconductor quantum devices. Nat. Commun. 12, 4914 (2021).Article ADS CAS PubMed PubMed Central Google Scholar Mazur, G. P. et al. Spin-mixing enhanced proximity effect in aluminum-based superconductor–semiconductor hybrids. Adv. Mater. 34, 2202034 (2022).Article ADS CAS Google Scholar Hornibrook, J. M. et al. Frequency multiplexing for readout of spin qubits. Appl. Phys. Lett. 104, 103108 (2014).Article ADS Google Scholar Zatelli, F. et al. Robust poor man’s Majorana zero modes using Yu-Shiba-Rusinov states. Nat. Commun. 15, 7933 (2024).Article ADS CAS PubMed PubMed Central Google Scholar Naaman, O. & Aumentado, J. Poisson transition rates from time-domain measurements with a finite bandwidth. Phys. Rev. Lett. 96, 100201 (2006).Article ADS CAS PubMed Google Scholar Liu, C.-X., Wang, G., Dvir, T. & Wimmer, M. Tunable superconducting coupling of quantum dots via Andreev bound states in semiconductor-superconductor nanowires. Phys. Rev. Lett. 129, 267701 (2022).Article ADS CAS PubMed Google Scholar Secchi, A. & Troiani, F. Theory of multidimensional quantum capacitance and its application to spin and charge discrimination in quantum dot arrays. Phys. Rev. B 107, 155411 (2023).Article ADS CAS Google Scholar Peri, L., Benito, M., Ford, C. J. & Gonzalez-Zalba, M. F. Unified linear response theory of quantum electronic circuits. npj Quantum Inf. 10, 114 (2024).Article ADS Google Scholar Zatelli, F. & van Loo, N. Data and code underlying the publication “Single-shot parity readout of a minimal Kitaev chain”. Version 3. 4TU.ResearchData https://doi.org/10.4121/227fd419-fded-4a96-ab62-421a0cd57fa5.v3 (2025).Download referencesAcknowledgementsThis work has been supported by the Dutch Organization for Scientific Research (NWO), Microsoft Corporation Station Q, the Spanish Ministry of Science (grant no. PID2021-125343NB-I00) and the Horizon Europe framework programme of the European Commission through the European Innovation Council Pathfinder grant no. 101115315 (QuKiT). We thank O. W. B. Benningshof and J. D. Mensingh for technical assistance with the cryogenic electronics, F. K. Malinowski for contributing to the design of the experiment, C. X. Liu and S. L. D. ten Haaf for their input on the manuscript, T. Dvir, A. Lombardi, V. P. M. Sietses, F. J. Bennebroek Evertsz, M. Wimmer, J. D. Torres Luna, S. Miles, S. Goswami, S. Roelofs, D. Joshi and A. R. Akhmerov for discussions, J. M. Hornibrook and D. J. Reilly for providing the frequency multiplexing chips and S. Gazibegovic for contribution to nanowire growth.Aut