NewsWorld
PredictionsDigestsScorecardTimelinesArticles
NewsWorld
HomePredictionsDigestsScorecardTimelinesArticlesWorldTechnologyPoliticsBusiness
AI-powered predictive news aggregation© 2026 NewsWorld. All rights reserved.
Trending
TrumpTariffTradeLaunchAnnouncePricesStrikesMajorFebruaryChinaMarketCourtNewsDigestSundayTimelineHongKongServiceMilitaryTechSafetyGlobalOil
TrumpTariffTradeLaunchAnnouncePricesStrikesMajorFebruaryChinaMarketCourtNewsDigestSundayTimelineHongKongServiceMilitaryTechSafetyGlobalOil
All Articles
Quantum computer breakthrough tracks qubit fluctuations in real time
Science Daily
Published 2 days ago

Quantum computer breakthrough tracks qubit fluctuations in real time

Science Daily · Feb 20, 2026 · Collected from RSS

Summary

Qubits, the heart of quantum computers, can change performance in fractions of a second — but until now, scientists couldn’t see it happening. Researchers at NBI have built a real-time monitoring system that tracks these rapid fluctuations about 100 times faster than previous methods. Using fast FPGA-based control hardware, they can instantly identify when a qubit shifts from “good” to “bad.” The discovery opens a new path toward stabilizing and scaling future quantum processors.

Full Article

Researchers at the Niels Bohr Institute have significantly increased how quickly changes in delicate quantum states can be detected inside a qubit. By combining commercially available hardware with new adaptive measurement techniques, the team can now observe rapid shifts in qubit behavior that were previously impossible to see. Qubits are the fundamental units of quantum computers, which scientists hope will one day outperform today's most powerful machines. But qubits are extremely sensitive. The materials used to build them often contain tiny defects that scientists still do not fully understand. These microscopic imperfections can shift position hundreds of times per second. As they move, they alter how quickly a qubit loses energy and with it valuable quantum information. Until recently, standard testing methods took up to a minute to measure qubit performance. That was far too slow to capture these rapid fluctuations. Instead, researchers could only determine an average energy loss rate, masking the true and often unstable behavior of the qubit. It is somewhat like asking a strong workhorse to pull a plow while obstacles constantly appear in its path faster than anyone can react. The animal may be capable, but unpredictable disruptions make the job much harder. FPGA Powered Real Time Qubit Control A research team from the Niels Bohr Institute's Center for Quantum Devices and the Novo Nordisk Foundation Quantum Computing Programme, led by postdoctoral researcher Dr. Fabrizio Berritta, developed a real time adaptive measurement system that tracks changes in the qubit energy loss (relaxation) rate as they occur. The project involved collaboration with scientists from the Norwegian University of Science and Technology, Leiden University, and Chalmers University. The new approach relies on a fast classical controller that updates its estimate of a qubit's relaxation rate within milliseconds. This matches the natural speed of the fluctuations themselves, rather than lagging seconds or minutes behind as older methods did. To achieve this, the team used a Field Programmable Gate Array (FPGA), a type of classical processor designed for extremely rapid operations. By running the experiment directly on the FPGA, they could quickly generate a "best guess" of how fast the qubit was losing energy using only a few measurements. This eliminated the need for slower data transfers to a conventional computer. Programming FPGAs for such specialized tasks can be challenging. Even so, the researchers succeeded in updating the controller's internal Bayesian model after every single qubit measurement. That allowed the system to continually refine its understanding of the qubit's condition in real time. As a result, the controller now keeps pace with the qubit's changing environment. Measurements and adjustments happen on nearly the same timescale as the fluctuations themselves, making the system roughly one hundred times faster than previously demonstrated. The work also revealed something new. Scientists did not previously know just how quickly fluctuations occur in superconducting qubits. These experiments have now provided that insight. Commercial Quantum Hardware Meets Advanced Control FPGAs have long been used in other scientific and engineering fields. In this case, the researchers used a commercially available FPGA based controller from Quantum Machines called the OPX1000. The system can be programmed in a language similar to Python, which many physicists already use, making it more accessible to research groups worldwide. The integration of this controller with advanced quantum hardware was made possible through close collaboration between the Niels Bohr Institute research group led by Associate Professor Morten Kjaergaard and Chalmers University, where the quantum processing unit was designed and fabricated. "The controller enables very tight integration between logic, measurements and feedforward: these components made our experiment possible," says Morten Kjærgaard. Why Real Time Calibration Matters for Quantum Computers Quantum technologies promise powerful new capabilities, though practical large scale quantum computers are still under development. Progress often comes incrementally, but occasionally major steps forward occur. By uncovering these previously hidden dynamics, the findings reshape how scientists think about testing and calibrating superconducting quantum processors. With current materials and manufacturing methods, moving toward real time monitoring and adjustment appears essential for improving reliability. The results also highlight the importance of partnerships between academic research and industry, along with creative uses of available technology. "Nowadays, in quantum processing units in general, the overall performance is not determined by the best qubits, but by the worst ones: those are the ones we need to focus on. The surprise from our work is that a 'good' qubit can turn into a 'bad' one in fractions of a second, rather than minutes or hours. "With our algorithm, the fast control hardware can pinpoint which qubit is 'good' or 'bad' basically in real time. We can also gather useful statistics on the 'bad` qubits in seconds instead of hours or days. "We still cannot explain a large fraction of the fluctuations we observe. Understanding and controlling the physics behind such fluctuations in qubit properties will be necessary for scaling quantum processors to a useful size," Fabrizio says.


Share this story

Read Original at Science Daily

Related Articles

Science Dailyabout 3 hours ago
Pecans found to improve cholesterol and boost heart health

A sweeping new scientific review suggests that pecans — America’s native nut — may pack more heart power than many people realize. After analyzing over 20 years of research, scientists found consistent evidence that eating pecans can improve key markers of cardiovascular health, including total cholesterol and “bad” LDL cholesterol, while also supporting antioxidant defenses.

Science Dailyabout 4 hours ago
New oxygen gel could prevent amputation in diabetic wound patients

Chronic wounds often spiral out of control because oxygen can’t reach the deepest layers of injured tissue. A new gel developed at UC Riverside delivers a continuous flow of oxygen right where it’s needed most, using a tiny battery-powered system. In high-risk mice, wounds healed in weeks instead of worsening. The innovation could dramatically reduce amputations—and may even open doors for lab-grown organs.

Science Dailyabout 5 hours ago
Triceratops had a giant nose that may have cooled its massive head

Triceratops’ massive head may have been doing more than just showing off those famous horns. Using CT scans and 3D reconstructions of fossil skulls, researchers uncovered a surprisingly complex nasal system hidden inside its enormous snout. Instead of being just a supersized nose for smelling, it likely housed intricate networks of nerves and blood vessels—and even special structures that helped regulate heat and moisture.

Science Dailyabout 9 hours ago
A simple water shift could turn Arctic farmland into a carbon sink

Deep in the Arctic north, drained peatlands—once massive carbon vaults built over thousands of years—are quietly leaking greenhouse gases into the atmosphere. But new field research from northern Norway suggests there’s a powerful way to slow that loss: raise the water level. In a two-year study, scientists found that restoring higher groundwater levels in cultivated Arctic peatlands dramatically cut carbon dioxide emissions, and in some cases even tipped the balance so the land absorbed more CO₂ than it released.

Science Dailyabout 11 hours ago
Flea and tick treatments for dogs and cats may be harming wildlife

Flea and tick medications trusted by pet owners worldwide may have an unexpected environmental cost. Scientists found that active ingredients from isoxazoline treatments pass into pet feces, exposing dung-feeding insects to toxic chemicals. These insects are essential for nutrient cycling and soil health. The findings suggest everyday pet treatments could ripple through ecosystems in surprising ways.

Science Dailyabout 13 hours ago
Frozen for 5,000 years, this ice cave bacterium resists modern antibiotics

Deep inside a Romanian ice cave, locked away in a 5,000-year-old layer of ice, scientists have uncovered a bacterium with a startling secret: it’s resistant to many modern antibiotics. Despite predating the antibiotic era, this cold-loving microbe carries more than 100 resistance-related genes and can survive drugs used today to treat serious infections like tuberculosis and UTIs.