NewsWorld
PredictionsDigestsScorecardTimelinesArticles
NewsWorld
HomePredictionsDigestsScorecardTimelinesArticlesWorldTechnologyPoliticsBusiness
AI-powered predictive news aggregation© 2026 NewsWorld. All rights reserved.
Trending
MilitaryTrumpStrikesMajorFebruaryIranAnnouncesMarketTariffsAdditionalIranianNewsDigestSundayTimelineUkraineNuclearTargetingGamePrivateEnergyTradeYearsHumanoid
MilitaryTrumpStrikesMajorFebruaryIranAnnouncesMarketTariffsAdditionalIranianNewsDigestSundayTimelineUkraineNuclearTargetingGamePrivateEnergyTradeYearsHumanoid
All Articles
Nature News
Published 12 days ago

Pre-incision structures reveal principles of DNA nucleotide excision repair

Nature News · Feb 11, 2026 · Collected from RSS

Full Article

Marteijn, J. A., Lans, H., Vermeulen, W. & Hoeijmakers, J. H. Understanding nucleotide excision repair and its roles in cancer and ageing. Nat. Rev. Mol. Cell Biol. 15, 465–481 (2014).Article CAS PubMed Google Scholar Spivak, G. Nucleotide excision repair in humans. DNA Repair 36, 13–18 (2015).Article CAS PubMed PubMed Central Google Scholar Hoeijmakers, J. H. Nucleotide excision repair II: from yeast to mammals. Trends Genet. 9, 211–217 (1993).Article CAS PubMed Google Scholar Lindahl, T. & Wood, R. D. Quality control by DNA repair. Science 286, 1897–1905 (1999).Article CAS PubMed Google Scholar Rapin, I. Disorders of nucleotide excision repair. Handb. Clin. Neurol. 113, 1637–1650 (2013).Article PubMed Google Scholar Theil, A. F., Hackes, D. & Lans, H. TFIIH central activity in nucleotide excision repair to prevent disease. DNA Repair 132, 103568 (2023).Article CAS PubMed Google Scholar Coverley, D. et al. Requirement for the replication protein SSB in human DNA excision repair. Nature 349, 538–541 (1991).Article ADS CAS PubMed Google Scholar Coin, F. et al. Nucleotide excision repair driven by the dissociation of CAK from TFIIH. Mol. Cell 31, 9–20 (2008).Article CAS PubMed Google Scholar Li, C. L. et al. Tripartite DNA lesion recognition and verification by XPC, TFIIH, and XPA in nucleotide excision repair. Mol. Cell 59, 1025–1034 (2015).Article CAS PubMed PubMed Central Google Scholar Scharer, O. D. Nucleotide excision repair in eukaryotes. Cold Spring Harb. Perspect. Biol. 5, a012609 (2013).Article PubMed PubMed Central Google Scholar Wood, R. D. et al. Nucleotide excision repair of DNA by mammalian cell extracts and purified proteins. Cold Spring Harb. Symp. Quant. Biol. 58, 625–632 (1993).Article CAS PubMed Google Scholar Selby, C. P., Lindsey-Boltz, L. A., Li, W. & Sancar, A. Molecular mechanisms of transcription-coupled repair. Annu. Rev. Biochem. 92, 115–144 (2023).Article CAS PubMed Google Scholar Aboussekhra, A. et al. Mammalian DNA nucleotide excision repair reconstituted with purified protein components. Cell 80, 859–868 (1995).Article ADS CAS PubMed Google Scholar Mu, D. et al. Reconstitution of human DNA repair excision nuclease in a highly defined system. J. Biol. Chem. 270, 2415–2418 (1995).Article CAS PubMed Google Scholar Araujo, S. J. et al. Nucleotide excision repair of DNA with recombinant human proteins: definition of the minimal set of factors, active forms of TFIIH, and modulation by CAK. Genes Dev. 14, 349–359 (2000).Article CAS PubMed PubMed Central Google Scholar Kokic, G. et al. Structural basis of TFIIH activation for nucleotide excision repair. Nat. Commun. 10, 2885 (2019).Article ADS PubMed PubMed Central Google Scholar Kim, J. et al. Lesion recognition by XPC, TFIIH and XPA in DNA excision repair. Nature 617, 170–175 (2023).Article ADS CAS PubMed PubMed Central Google Scholar Min, J. H. & Pavletich, N. P. Recognition of DNA damage by the Rad4 nucleotide excision repair protein. Nature 449, 570–575 (2007).Article ADS CAS PubMed Google Scholar Yu, J. et al. Molecular architecture and functional dynamics of the pre-incision complex in nucleotide excision repair. Nat. Commun. 15, 8511 (2024).Article ADS CAS PubMed PubMed Central Google Scholar O’Donovan, A., Davies, A. A., Moggs, J. G., West, S. C. & Wood, R. D. XPG endonuclease makes the 3’ incision in human DNA nucleotide excision repair. Nature 371, 432–435 (1994).Article ADS PubMed Google Scholar Wakasugi, M., Reardon, J. T. & Sancar, A. The non-catalytic function of XPG protein during dual incision in human nucleotide excision repair. J. Biol. Chem. 272, 16030–16034 (1997).Article CAS PubMed Google Scholar Mu, D., Hsu, D. S. & Sancar, A. Reaction mechanism of human DNA repair excision nuclease. J. Biol. Chem. 271, 8285–8294 (1996).Article CAS PubMed Google Scholar Sugasawa, K., Akagi, J., Nishi, R., Iwai, S. & Hanaoka, F. Two-step recognition of DNA damage for mammalian nucleotide excision repair: directional binding of the XPC complex and DNA strand scanning. Mol Cell 36, 642–653 (2009).Article CAS PubMed Google Scholar Staresincic, L. et al. Coordination of dual incision and repair synthesis in human nucleotide excision repair. EMBO J. 28, 1111–1120 (2009).Article CAS PubMed PubMed Central Google Scholar Wakasugi, M. & Sancar, A. Order of assembly of human DNA repair excision nuclease. J. Biol. Chem. 274, 18759–18768 (1999).Article CAS PubMed Google Scholar Bochkareva, E., Korolev, S., Lees-Miller, S. P. & Bochkarev, A. Structure of the RPA trimerization core and its role in the multistep DNA-binding mechanism of RPA. EMBO J. 21, 1855–1863 (2002).Article CAS PubMed PubMed Central Google Scholar Volker, M. et al. Sequential assembly of the nucleotide excision repair factors in vivo. Mol. Cell 8, 213–224 (2001).Article CAS PubMed Google Scholar Zotter, A. et al. Recruitment of the nucleotide excision repair endonuclease XPG to sites of UV-induced DNA damage depends on functional TFIIH. Mol. Cell. Biol. 26, 8868–8879 (2006).Article CAS PubMed PubMed Central Google Scholar Zhou, E. Y. et al. Clinical and molecular epidemiological study of xeroderma pigmentosum in China: a case series of 19 patients. J. Dermatol. 44, 71–75 (2017).Article CAS PubMed Google Scholar Li, L., Elledge, S. J., Peterson, C. A., Bales, E. S. & Legerski, R. J. Specific association between the human DNA repair proteins XPA and ERCC1. Proc. Natl Acad. Sci. USA 91, 5012–5016 (1994).Article ADS CAS PubMed PubMed Central Google Scholar Sabatella, M. et al. Repair protein persistence at DNA lesions characterizes XPF defect with Cockayne syndrome features. Nucleic Acids Res. 46, 9563–9577 (2018).Article CAS PubMed PubMed Central Google Scholar Jones, M. et al. Cryo-EM structures of the XPF–ERCC1 endonuclease reveal how DNA-junction engagement disrupts an auto-inhibited conformation. Nat. Commun. 11, 1120 (2020).Article ADS CAS PubMed PubMed Central Google Scholar Greber, B. J., Toso, D. B., Fang, J. & Nogales, E. The complete structure of the human TFIIH core complex. eLife 8, e44771 (2019).Article PubMed PubMed Central Google Scholar Kuper, J. et al. XPD stalled on cross-linked DNA provides insight into damage verification. Nat. Struct. Mol. Biol. 31, 1580–1588 (2024).Article CAS PubMed PubMed Central Google Scholar Fan, J. & Pavletich, N. P. Structure and conformational change of a replication protein A heterotrimer bound to ssDNA. Genes Dev. 26, 2337–2347 (2012).Article CAS PubMed PubMed Central Google Scholar Yates, L. A. et al. A structural and dynamic model for the assembly of Replication Protein A on single-stranded DNA. Nat. Commun. 9, 5447 (2018).Article ADS CAS PubMed PubMed Central Google Scholar Bochkarev, A., Pfuetzner, R. A., Edwards, A. M. & Frappier, L. Structure of the single-stranded-DNA-binding domain of replication protein A bound to DNA. Nature 385, 176–181 (1997).Article ADS CAS PubMed Google Scholar Mer, G. et al. Structural basis for the recognition of DNA repair proteins UNG2, XPA, and RAD52 by replication factor RPA. Cell 103, 449–456 (2000).Article CAS PubMed Google Scholar Kim, M. et al. Two interaction surfaces between XPA and RPA organize the preincision complex in nucleotide excision repair. Proc. Natl Acad. Sci. USA 119, e2207408119 (2022).Article CAS PubMed PubMed Central Google Scholar Tsodikov, O. V. et al. Structural basis for the recruitment of ERCC1-XPF to nucleotide excision repair complexes by XPA. EMBO J. 26, 4768–4776 (2007).Article CAS PubMed PubMed Central Google Scholar Tsutakawa, S. E. et al. Human XPG nuclease structure, assembly, and activities with insights for neurodegeneration and cancer from pathogenic mutations. Proc. Natl Acad. Sci. USA 117, 14127–14138 (2020).Article ADS CAS PubMed PubMed Central Google Scholar Fassihi, H. et al. Deep phenotyping of 89 xeroderma pigmentosum patients reveals unexpected heterogeneity dependent on the precise molecular defect. Proc. Natl Acad. Sci. USA 113, E1236–1245 (2016).Article CAS PubMed PubMed Central Google Scholar Tapias, A. et al. Ordered conformational changes in damaged DNA induced by nucleotide excision repair factors. J. Biol. Chem. 279, 19074–19083 (2004).Article CAS PubMed PubMed Central Google Scholar van den Heuvel, D. et al. A disease-associated XPA allele interferes with TFIIH binding and primarily affects transcription-coupled nucleotide excision repair. Proc. Natl Acad. Sci. USA 120, e2208860120 (2023).Article PubMed PubMed Central Google Scholar Orelli, B. et al. The XPA-binding domain of ERCC1 is required for nucleotide excision repair but not other DNA repair pathways. J. Biol. Chem. 285, 3705–3712 (2010).Article CAS PubMed Google Scholar Sung, P. et al. Human xeroderma pigmentosum group D gene encodes a DNA helicase. Nature 365, 852–855 (1993).Article ADS CAS PubMed Google Scholar Coin, F. et al. Mutations in the XPD helicase gene result in XP and TTD phenotypes, preventing interaction between XPD and the p44 subunit of TFIIH. Nat. Genet. 20, 184–188 (1998).Article CAS PubMed Google Scholar Aibara, S., Schilbach, S. & Cramer, P. Structures of mammalian RNA polymerase II pre-initiation complexes. Nature 594, 124–128 (2021).Article ADS CAS PubMed Google Scholar Sia, Y., Pan, H., Chen, K. & Chen, Z. Structural insights into chromatin remodeling by ISWI during active ATP hydrolysis. Science 388, eadu5654 (2025).Article ADS CAS PubMed Google Scholar Agrawal, S. et al. Human RPA is an essential telomerase processivity factor for maintaining telomeres. Science 390, 495–502 (2025).Article ADS CAS PubMed PubMed Central Google Scholar Henricksen, L. A., Umbricht, C. B. & Wold, M. S. Recombinant replication protein A: expression, complex formation, and functional characterization. J. Biol. Chem. 269, 11121–11132 (1994).Article CAS PubMed Google Scholar Kastner, B. et al. GraFix: sample preparation for single-particle electron cryomicroscopy. Nat. Methods 5, 53–55 (2008).Article CAS PubMed Google Scholar Schorb, M., Haberbosch, I., Hagen, W. J. H., Schwab, Y. & Ma


Share this story

Read Original at Nature News

Related Articles

Nature News3 days ago
Gel helps mini spinal cords to heal from injury
Nature News3 days ago
Why do curling stones slide across ice the way they do?
Nature News3 days ago
AI is threatening science jobs. Which ones are most at risk?
Nature News3 days ago
Are obesity drugs causing a severe complication? What the science says
Nature News3 days ago
Runaway black hole leaves a trail of stars
Nature News3 days ago
Briefing chat: How hovering bumblebees keep their cool