NewsWorld
PredictionsDigestsScorecardTimelinesArticles
NewsWorld
HomePredictionsDigestsScorecardTimelinesArticlesWorldTechnologyPoliticsBusiness
AI-powered predictive news aggregation© 2026 NewsWorld. All rights reserved.
Trending
AlsNewsFebruaryMajorDane'sResearchElectionCandidateCampaignPartyStrikesDigestSundayTimelinePrivateCrisisPoliticalEricBlueCreditFundingRamadanAdditionalLaunches
AlsNewsFebruaryMajorDane'sResearchElectionCandidateCampaignPartyStrikesDigestSundayTimelinePrivateCrisisPoliticalEricBlueCreditFundingRamadanAdditionalLaunches
All Articles
Nature News
Published 11 days ago

Parity-doublet coherence times in optically trapped polyatomic molecules

Nature News · Feb 11, 2026 · Collected from RSS

Full Article

Yu, P., Cheuk, L. W., Kozyryev, I. & Doyle, J. M. A scalable quantum computing platform using symmetric-top molecules. New J. Phys. 21, 093049 (2019).Article ADS CAS Google Scholar Wall, M. L., Maeda, K. & Carr, L. D. Simulating quantum magnets with symmetric top molecules. Ann. Phys. 525, 845–865 (2013).Article MathSciNet CAS Google Scholar Wall, M. L., Maeda, K. & Carr, L. D. Realizing unconventional quantum magnetism with symmetric top molecules. New J. Phys. 17, 025001 (2015).Article ADS Google Scholar Wall, M. L., Hazzard, K. R. A. & Rey, A. M. in From Atomic to Mesoscale: The Role of Quantum Coherence in Systems of Various Complexities 3–37 (World Scientific, 2015).Kozyryev, I. & Hutzler, N. R. Precision measurement of time-reversal symmetry violation with laser-cooled polyatomic molecules. Phys. Rev. Lett. 119, 133002 (2017).Article ADS PubMed Google Scholar Norrgard, E. et al. Nuclear-spin dependent parity violation in optically trapped polyatomic molecules. Commun. Phys. 2, 77 (2019).Article Google Scholar Hutzler, N. R. Polyatomic molecules as quantum sensors for fundamental physics. Quantum Sci. Technol. 5, 044011 (2020).Article ADS Google Scholar Kozyryev, I., Lasner, Z. & Doyle, J. M. Enhanced sensitivity to ultralight bosonic dark matter in the spectra of the linear radical SrOH. Phys. Rev. A 103, 043313 (2021).Article ADS CAS Google Scholar DeMille, D., Hutzler, N. R., Rey, A. M. & Zelevinsky, T. Quantum sensing and metrology for fundamental physics with molecules. Nat. Phys. 20, 741–749 (2024).Article CAS Google Scholar Hallas, C. et al. Optical trapping of a polyatomic molecule in an ℓ-type parity doublet state. Phys. Rev. Lett. 130, 153202 (2023).Article ADS CAS PubMed Google Scholar Vilas, N. B. et al. Blackbody thermalization and vibrational lifetimes of trapped polyatomic molecules. Phys. Rev. A 107, 062802 (2023).Article ADS CAS Google Scholar Micheli, A., Brennen, G. K. & Zoller, P. A toolbox for lattice-spin models with polar molecules. Nat. Phys. 2, 341–347 (2006).Article CAS Google Scholar DeMille, D. Quantum computation with trapped polar molecules. Phys. Rev. Lett. 88, 067901 (2002).Article ADS CAS PubMed Google Scholar Tesch, C. M. & de Vivie-Riedle, R. Quantum computation with vibrationally excited molecules. Phys. Rev. Lett. 89, 157901 (2002).Article ADS PubMed Google Scholar Wei, Q., Kais, S., Friedrich, B. & Herschbach, D. Entanglement of polar symmetric top molecules as candidate qubits. J. Chem. Phys. 135, 154102 (2011).Article ADS PubMed Google Scholar Barry, J. F., McCarron, D. J., Norrgard, E. B., Steinecker, M. H. & DeMille, D. Magneto-optical trapping of a diatomic molecule. Nature 512, 286–289 (2014).Article ADS CAS PubMed Google Scholar Anderegg, L. et al. Radio frequency magneto-optical trapping of CaF with high density. Phys. Rev. Lett. 119, 103201 (2017).Article ADS PubMed Google Scholar Truppe, S. et al. Molecules cooled below the Doppler limit. Nat. Phys. 13, 1173–1176 (2017).Article CAS Google Scholar Collopy, A. L. et al. 3-D magneto-optical trap of yttrium monoxide. Phys. Rev. Lett. 121, 213201 (2018).Article ADS CAS PubMed Google Scholar Zeng, Z., Deng, S., Yang, S. & Yan, B. Three-dimensional magneto-optical trapping of barium monofluoride. Phys. Rev. Lett. 133, 143404 (2024).Article ADS CAS PubMed Google Scholar Ni, K.-K. et al. A high phase-space-density gas of polar molecules. Science 322, 231–235 (2008).Article ADS CAS PubMed Google Scholar Chen, X.-Y. et al. Ultracold field-linked tetratomic molecules. Nature 626, 283–287 (2024).Article ADS CAS PubMed PubMed Central Google Scholar Anderegg, L. et al. An optical tweezer array of ultracold molecules. Science 365, 1156–1158 (2019).Article ADS CAS PubMed Google Scholar Cairncross, W. B. et al. Assembly of a rovibrational ground state molecule in an optical tweezer. Phys. Rev. Lett. 126, 123402 (2021).Article ADS CAS PubMed Google Scholar Zhang, J. T. et al. An optical tweezer array of ground-state polar molecules. Quantum Sci. Technol. 7, 035006 (2022).Article ADS Google Scholar Ruttley, D. K. et al. Formation of ultracold molecules by merging optical tweezers. Phys. Rev. Lett. 130, 223401 (2023).Article ADS CAS PubMed Google Scholar Holland, C. M., Lu, Y. & Cheuk, L. W. Bichromatic imaging of single molecules in an optical tweezer array. Phys. Rev. Lett. 131, 053202 (2023).Article ADS CAS PubMed Google Scholar Park, J. W., Yan, Z. Z., Loh, H., Will, S. A. & Zwierlein, M. W. Second-scale nuclear spin coherence time of ultracold 23Na40K molecules. Science 357, 372–375 (2017).Article ADS CAS PubMed Google Scholar Burchesky, S. et al. Rotational coherence times of polar molecules in optical tweezers. Phys. Rev. Lett. 127, 123202 (2021).Article ADS CAS PubMed Google Scholar Holland, C. M., Lu, Y. & Cheuk, L. W. On-demand entanglement of molecules in a reconfigurable optical tweezer array. Science 382, 1143–1147 (2023).Article ADS MathSciNet CAS PubMed Google Scholar Bao, Y. et al. Dipolar spin-exchange and entanglement between molecules in an optical tweezer array. Science 382, 1138–1143 (2023).Article ADS MathSciNet CAS PubMed Google Scholar Picard, L. R. B. et al. Entanglement and iSWAP gate between molecular qubits. Nature 637, 821–826 (2025).Article ADS CAS PubMed Google Scholar Ruttley, D. K., Hepworth, T. R., Guttridge, A. & Cornish, S. L. Long-lived entanglement of molecules in magic-wavelength optical tweezers. Nature 637, 827–832 (2025).Article ADS CAS PubMed PubMed Central Google Scholar Sawant, R. et al. Ultracold polar molecules as qudits. New J. Phys. 22, 013027 (2020).Article ADS CAS Google Scholar Albert, V. V., Covey, J. P. & Preskill, J. Robust encoding of a qubit in a molecule. Phys. Rev. X 10, 031050 (2020).CAS Google Scholar Gregory, P. D., Blackmore, J. A., Bromley, S. L., Hutson, J. M. & Cornish, S. L. Robust storage qubits in ultracold polar molecules. Nat. Phys. 17, 1149–1153 (2021).Article CAS Google Scholar Park, A. J. et al. Extended rotational coherence of polar molecules in an elliptically polarized trap. Phys. Rev. Lett. 131, 183401 (2023).Article ADS CAS PubMed Google Scholar Gregory, P. D. et al. Second-scale rotational coherence and dipolar interactions in a gas of ultracold polar molecules. Nat. Phys. 20, 415–421 (2024).Article CAS Google Scholar Neyenhuis, B. et al. Anisotropic polarizability of ultracold polar 40K87Rb molecules. Phys. Rev. Lett. 109, 230403 (2012).Article ADS CAS PubMed Google Scholar Seeßelberg, F. et al. Extending rotational coherence of interacting polar molecules in a spin-decoupled magic trap. Phys. Rev. Lett. 121, 253401 (2018).Article ADS PubMed Google Scholar Blackmore, J. A. et al. Ultracold molecules for quantum simulation: rotational coherences in CaF and RbCs. Quantum Sci. Technol. 4, 014010 (2018).Article ADS Google Scholar Bause, R. et al. Tune-out and magic wavelengths for ground-state 23Na40K molecules. Phys. Rev. Lett. 125, 023201 (2020).Article ADS CAS PubMed Google Scholar Guan, Q., Cornish, S. L. & Kotochigova, S. Magic conditions for multiple rotational states of bialkali molecules in optical lattices. Phys. Rev. A 103, 043311 (2021).Article ADS CAS Google Scholar Zhang, C., Yu, P., Jadbabaie, A. & Hutzler, N. R. Quantum-enhanced metrology for molecular symmetry violation using decoherence-free subspaces. Phys. Rev. Lett. 131, 193602 (2023).Article ADS CAS PubMed Google Scholar Takahashi, Y., Zhang, C., Jadbabaie, A. & Hutzler, N. R. Engineering field-insensitive molecular clock transitions for symmetry violation searches. Phys. Rev. Lett. 131, 183003 (2023).Article ADS CAS PubMed Google Scholar Anderegg, L. et al. Quantum control of trapped polyatomic molecules for eEDM searches. Science 382, 665–668 (2023).Article ADS MathSciNet CAS PubMed Google Scholar Takahashi, Y. et al. Engineered molecular clock transitions for symmetry violation searches. Preprint at https://doi.org/10.48550/arXiv.2508.06787 (2025).Augenbraun, B. L. et al. in Advances in Atomic, Molecular, and Optical Physics (eds DiMauro, L. F. et al.), Vol. 72, Ch 2, 89–182 (Academic Press, 2023).Zeppenfeld, M. et al. Sisyphus cooling of electrically trapped polyatomic molecules. Nature 491, 570–573 (2012).Article ADS CAS PubMed Google Scholar Prehn, A., Ibrügger, M., Glöckner, R., Rempe, G. & Zeppenfeld, M. Optoelectrical cooling of polar molecules to submillikelvin temperatures. Phys. Rev. Lett. 116, 063005 (2016).Article ADS PubMed Google Scholar Liu, Y. et al. Magnetic trapping of cold methyl radicals. Phys. Rev. Lett. 118, 093201 (2017).Article ADS PubMed Google Scholar Sawaoka, H. et al. Optical trapping of SrOH molecules for dark matter and T-violation searches. Preprint at https://doi.org/10.48550/arXiv.2509.01618 (2025).Vilas, N. B. et al. An optical tweezer array of ultracold polyatomic molecules. Nature 628, 282–286 (2024).Article ADS CAS PubMed Google Scholar Löw, M., Ibrügger, M., Rempe, G. & Zeppenfeld, M. Coherence of symmetry-protected rotational qubits in cold polyatomic molecules. Phys. Rev. Lett. 134, 113402 (2025).Article ADS PubMed Google Scholar Hallas, C. et al. High compression blue-detuned magneto-optical trap of polyatomic molecules. Preprint at https://doi.org/10.48550/arXiv.2404.03636 (2024).Zhang, Z. et al. High optical access cryogenic system for Rydberg atom arrays with a 3000-second trap lifetime. PRX Quantum 6, 020337 (2025).Article ADS Google Scholar Arrowsmith-Kron, G. et al. Opportunities for fundamental physics research with radioactive molecules. Rep. Prog. Phys. 87, 084301 (2024).Article ADS CAS Google Scholar Kozyryev, I., Baum, L., Matsuda, K. & Doyle, J. M. Proposal for laser cooling of complex polyatomic molecules. ChemPhysChem 17, 3641–3648 (2016).Article CAS PubMed Google Scholar Augenbraun, B. L., Doyle, J. M., Zelevinsky, T. & Kozyryev, I. Molecular asymmetry and optical cycling: laser cooling asymmetric top molecules. Phys. Rev. X 10, 031022 (2020).CAS Google Scholar Frenett, A., Lasner, Z., Cheng, L. & Doyle, J. M. Vibrational br


Share this story

Read Original at Nature News

Related Articles

Nature News2 days ago
Gel helps mini spinal cords to heal from injury
Nature News2 days ago
Why do curling stones slide across ice the way they do?
Nature News2 days ago
AI is threatening science jobs. Which ones are most at risk?
Nature News2 days ago
Are obesity drugs causing a severe complication? What the science says
Nature News2 days ago
Runaway black hole leaves a trail of stars
Nature News2 days ago
Briefing chat: How hovering bumblebees keep their cool