Nature News · Feb 11, 2026 · Collected from RSS
Data availability The datasets generated in this study are available on DANDI (https://doi.org/10.48324/dandi.001676/0.251205.2137). Source data are provided with this paper. Code availabilityCode will be made available upon request.ReferencesO’Keefe, J. & Nadel, L. The Hippocampus as a Cognitive Map (Clarendon Press, 1978).Taube, J. S., Muller, R. U. & Ranck, J. B. Head-direction cells recorded from the postsubiculum in freely moving rats. I. Description and quantitative analysis. J. Neurosci. 10, 420–435 (1990).Article CAS PubMed PubMed Central Google Scholar O’Keefe, J. Place units in the hippocampus of the freely moving rat. Exp. Neurol. 51, 78–109 (1976).Article PubMed Google Scholar Kentros, C. G., Agnihotri, N. T., Streater, S., Hawkins, R. D. & Kandel, E. R. Increased attention to spatial context increases both place field stability and spatial memory. Neuron 42, 283–295 (2004).Article CAS PubMed Google Scholar Mankin, E. A. et al. Neuronal code for extended time in the hippocampus. Proc. Natl Acad. Sci. USA 109, 19462–19467 (2012).Article ADS CAS PubMed PubMed Central Google Scholar Ziv, Y. et al. Long-term dynamics of CA1 hippocampal place codes. Nat. Neurosci. 16, 264–266 (2013).Article CAS PubMed PubMed Central Google Scholar Khatib, D. et al. Active experience, not time, determines within-day representational drift in dorsal CA1. Neuron 111, 2348–2356.e4 (2023).Article CAS PubMed Google Scholar Geva, N., Deitch, D., Rubin, A. & Ziv, Y. Time and experience differentially affect distinct aspects of hippocampal representational drift. Neuron 111, 2357–2366.e5 (2023).Article CAS PubMed Google Scholar De Snoo, M. L., Miller, A. M. P., Ramsaran, A. I., Josselyn, S. A. & Frankland, P. W. Exercise accelerates place cell representational drift. Curr. Biol. 33, R96–R97 (2023).Article PubMed PubMed Central Google Scholar Lee, J. S., Briguglio, J. J., Cohen, J. D., Romani, S. & Lee, A. K. The statistical structure of the hippocampal code for space as a function of time, context, and value. Cell 183, 620–635.e22 (2020).Article CAS PubMed Google Scholar Climer, J. R., Davoudi, H., Oh, J. Y. & Dombeck, D. A. Hippocampal representations drift in stable multisensory environments. Nature 645, 457–465 (2025).Article ADS CAS PubMed PubMed Central Google Scholar Schoonover, C. E., Ohashi, S. N., Axel, R. & Fink, A. J. P. Representational drift in primary olfactory cortex. Nature 594, 541–546 (2021).Article ADS CAS PubMed Google Scholar Deitch, D., Rubin, A. & Ziv, Y. Representational drift in the mouse visual cortex. Curr. Biol. 31, 4327–4339.e6 (2021).Article CAS PubMed Google Scholar Bauer, J. et al. Sensory experience steers representational drift in mouse visual cortex. Nat. Commun. 15, 9153 (2024).Article ADS CAS PubMed PubMed Central Google Scholar Marks, T. D. & Goard, M. J. Stimulus-dependent representational drift in primary visual cortex. Nat. Commun. 12, 5169 (2021).Article ADS CAS PubMed PubMed Central Google Scholar Driscoll, L. N., Pettit, N. L., Minderer, M., Chettih, S. N. & Harvey, C. D. Dynamic reorganization of neuronal activity patterns in parietal cortex. Cell 170, 986–999.e16 (2017).Article CAS PubMed PubMed Central Google Scholar Yang, W. et al. Selection of experience for memory by hippocampal sharp wave ripples. Science 383, 1478–1483 (2024).Article ADS CAS PubMed PubMed Central Google Scholar Keinath, A. T., Mosser, C.-A. & Brandon, M. P. The representation of context in mouse hippocampus is preserved despite neural drift. Nat. Commun. 13, 2415 (2022).Article ADS CAS PubMed PubMed Central Google Scholar Liberti, W. A., Schmid, T. A., Forli, A., Snyder, M. & Yartsev, M. M. A stable hippocampal code in freely flying bats. Nature 604, 98–103 (2022).Article ADS PubMed PubMed Central Google Scholar Duszkiewicz, A. J. et al. Local origin of excitatory–inhibitory tuning equivalence in a cortical network. Nat. Neurosci. 27, 782–792 (2024).Article CAS PubMed PubMed Central Google Scholar Duszkiewicz, A. J., Fricker, D., Burgalossi, A. & Peyrache, A. The postsubiculum as a head-direction cortex. Trends Neurosci. 48, 829–840 (2025).Article CAS PubMed Google Scholar Skaggs, W., Knierim, J., Kudrimoti, H. & McNaughton, B. in Advances in Neural Information Processing Systems Vol. 7 (MIT Press, 1994).Chaudhuri, R., Gerçek, B., Pandey, B., Peyrache, A. & Fiete, I. The intrinsic attractor manifold and population dynamics of a canonical cognitive circuit across waking and sleep. Nat. Neurosci. 22, 1512–1520 (2019).Article CAS PubMed Google Scholar Redish, A. D., Elga, A. N. & Touretzky, D. S. A coupled attractor model of the rodent head direction system. Network 7, 671–685 (1996).Article Google Scholar Zhang, K. Representation of spatial orientation by the intrinsic dynamics of the head-direction cell ensemble: a theory. J. Neurosci. 16, 2112–2126 (1996).Article CAS PubMed PubMed Central Google Scholar Kim, S. S., Rouault, H., Druckmann, S. & Jayaraman, V. Ring attractor dynamics in the Drosophila central brain. Science 356, 849–853 (2017).Article ADS CAS PubMed Google Scholar Ajabi, Z., Keinath, A. T., Wei, X.-X. & Brandon, M. P. Population dynamics of head-direction neurons during drift and reorientation. Nature 615, 892–899 (2023).Article ADS CAS PubMed PubMed Central Google Scholar Peyrache, A., Lacroix, M. M., Petersen, P. C. & Buzsáki, G. Internally organized mechanisms of the head direction sense. Nat. Neurosci. 18, 569–575 (2015).Article CAS PubMed PubMed Central Google Scholar Taube, J. S., Muller, R. U. & Ranck, J. B. Head-direction cells recorded from the postsubiculum in freely moving rats. II. Effects of environmental manipulations. J. Neurosci. 10, 436–447 (1990).Article CAS PubMed PubMed Central Google Scholar Asumbisa, K., Peyrache, A. & Trenholm, S. Flexible cue anchoring strategies enable stable head direction coding in both sighted and blind animals. Nat. Commun. 13, 5483 (2022).Article ADS CAS PubMed PubMed Central Google Scholar Taube, J. S. & Burton, H. L. Head direction cell activity monitored in a novel environment and during a cue conflict situation. J. Neurophysiol. 74, 1953–1971 (1995).Article CAS PubMed Google Scholar Sheintuch, L. et al. Tracking the same neurons across multiple days in Ca2+ imaging data. Cell Rep. 21, 1102–1115 (2017).Article CAS PubMed PubMed Central Google Scholar Dudchenko, P. A. & Zinyuk, L. E. The formation of cognitive maps of adjacent environments: Evidence from the head direction cell system. Behav. Neurosci. 119, 1511–1523 (2005).Article PubMed Google Scholar Yoder, R. M. et al. Both visual and idiothetic cues contribute to head direction cell stability during navigation along complex routes. J. Neurophysiol. 105, 2989–3001 (2011).Article PubMed PubMed Central Google Scholar Golob, E. J. & Taube, J. S. Head direction cells and episodic spatial information in rats without a hippocampus. Proc. Natl Acad. Sci. USA 94, 7645–7650 (1997).Article ADS CAS PubMed PubMed Central Google Scholar Bassett, J. P., Wills, T. J. & Cacucci, F. Self-organized attractor dynamics in the developing head direction circuit. Curr. Biol. 28, 609–615.e3 (2018).Article CAS PubMed PubMed Central Google Scholar Petrucco, L. et al. Neural dynamics and architecture of the heading direction circuit in zebrafish. Nat. Neurosci. 26, 765–773 (2023).Article CAS PubMed PubMed Central Google Scholar Siegenthaler, D. et al. Visual objects refine head direction coding. Science 389, eadu9828 (2025).Article CAS PubMed Google Scholar Zugaro, M. B., Arleo, A., Berthoz, A. & Wiener, S. I. Rapid Spatial reorientation and head direction cells. J. Neurosci. 23, 3478–3482 (2003).Article CAS PubMed PubMed Central Google Scholar Bicanski, A. & Burgess, N. Environmental anchoring of head direction in a computational model of retrosplenial cortex. J. Neurosci. 36, 11601–11618 (2016).Article CAS PubMed PubMed Central Google Scholar Kim, S. S., Hermundstad, A. M., Romani, S., Abbott, L. F. & Jayaraman, V. Generation of stable heading representations in diverse visual scenes. Nature 576, 126–131 (2019).Article ADS CAS PubMed PubMed Central Google Scholar Goodridge, J. P., Dudchenko, P. A., Worboys, K. A., Golob, E. J. & Taube, J. S. Cue control and head direction cells. Behav. Neurosci. 112, 749–761 (1998).Article CAS PubMed Google Scholar Knierim, J. J., Kudrimoti, H. S. & McNaughton, B. L. Place cells, head direction cells, and the learning of landmark stability. J. Neurosci. 15, 1648–1659 (1995).Article CAS PubMed PubMed Central Google Scholar Harland, B. et al. Lesions of the head direction cell system increase hippocampal place field repetition. Curr. Biol. 27, 2706–2712.e2 (2017).Article CAS PubMed PubMed Central Google Scholar Winter, S. S., Clark, B. J. & Taube, J. S. Disruption of the head direction cell network impairs the parahippocampal grid cell signal. Science 347, 870–874 (2015).Article ADS CAS PubMed PubMed Central Google Scholar McNaughton, B. L., Battaglia, F. P., Jensen, O., Moser, E. I. & Moser, M.-B. Path integration and the neural basis of the ‘cognitive map’. Nat. Rev. Neurosci. 7, 663–678 (2006).Article CAS PubMed Google Scholar Calton, J. L. et al. Hippocampal place cell instability after lesions of the head direction cell network. J. Neurosci. 23, 9719–9731 (2003).Article CAS PubMed PubMed Central Google Scholar Zheng, Z.(S. am) et al. Perpetual step-like restructuring of hippocampal circuit dynamics. Cell Rep. 43, 114702 (2024).Article CAS PubMed Google Scholar Gardner, R. J. et al. Toroidal topology of population activity in grid cells. Nature 602, 123–128 (2022).Article ADS CAS PubMed PubMed Central Google Scholar Levenstein, D., Efremov, A., Eyono, R. H., Peyrache, A. & Richards, B. Sequential predictive learning is a unifying theory for hippocampal representation and replay. Preprint at bioRxiv https://doi.org/10.1101/2024.04.28.591528 (2024).Balsamo, G. et al. Modular microcircuit organization of the presubicular head-direction map. Cell Rep. 39, 110684 (2022).Article CAS PubMed