NewsWorld
PredictionsDigestsScorecardTimelinesArticles
NewsWorld
HomePredictionsDigestsScorecardTimelinesArticlesWorldTechnologyPoliticsBusiness
AI-powered predictive news aggregation© 2026 NewsWorld. All rights reserved.
Trending
MilitaryAnnounceMajorTariffMarketTradeIranCourtSafetyLegalChinaPressureTargetPricesStrikeFebruaryNuclearOilChineseLaborHongKongTechTensions
MilitaryAnnounceMajorTariffMarketTradeIranCourtSafetyLegalChinaPressureTargetPricesStrikeFebruaryNuclearOilChineseLaborHongKongTechTensions
All Articles
Science Daily
Published 5 days ago

Majorana qubits decoded in quantum computing breakthrough

Science Daily · Feb 16, 2026 · Collected from RSS

Summary

Scientists have developed a new way to read the hidden states of Majorana qubits, which store information in paired quantum modes that resist noise. The results confirm their protected nature and show millisecond scale coherence, bringing robust quantum computers closer to reality.

Full Article

"This is a crucial advance," says Ramón Aguado, a CSIC researcher at the Madrid Institute of Materials Science (ICMM) and co author of the study. He explains that the team has successfully retrieved information stored in Majorana qubits by applying a technique known as quantum capacitance. According to Aguado, this method functions as "a global probe sensitive to the overall state of the system," enabling scientists to access information that was previously difficult to observe. To clarify the importance of the result, Aguado describes topological qubits as "like safe boxes for quantum information." Instead of keeping data in one fixed location, these qubits spread information across two linked quantum states called Majorana zero modes. Because the data is distributed in this way, it gains natural protection. This structure makes topological qubits especially attractive for quantum computing. "They are inherently robust against local noise that produces decoherence, since to corrupt the information, a failure would have to affect the system globally," Aguado explains. However, that same protective feature has posed a major challenge for researchers. As he notes, "this same virtue had become their experimental Achilles' heel: how do you "read" or "detect" a property that doesn't reside at any specific point?" Building the Kitaev Minimal Chain To overcome this obstacle, the team engineered a modular nanostructure assembled from small components, similar to building with Lego blocks. This device, called a Kitaev minimal chain, consists of two semiconductor quantum dots connected through a superconductor. Aguado explains that this approach allows researchers to construct the system from the ground up. "Instead of acting blindly on a combination of materials, as in previous experiments, we create it bottom up and are able to generate Majorana modes in a controlled manner, which is in fact the main idea of our QuKit project." This careful design gives scientists direct control over the formation of Majorana modes. Real Time Measurement of Majorana Parity After assembling the minimal Kitaev chain, the team applied the Quantum Capacitance probe. For the first time, they were able to determine in real time and with a single measurement whether the combined quantum state formed by the two Majorana modes was even or odd. In practical terms, this reveals whether the qubit is in a filled or empty state, which defines how it stores information. "The experiment elegantly confirms the protection principle: while local charge measurements are blind to this information, the global probe reveals it clearly," says Gorm Steffensen, a researcher at ICMM CSIC who also participated in the study. The researchers also detected "random parity jumps," another significant outcome of the experiment. By analyzing these events, they measured "parity coherence exceeding one millisecond," a duration considered highly promising for future operations involving topological qubits based on Majorana modes. Collaboration Between Delft and ICMM CSIC The study brings together an innovative experimental platform developed mainly at Delft University of Technology and theoretical work carried out at ICMM CSIC. The authors emphasize that the theoretical contribution was "crucial for understanding this highly sophisticated experiment," highlighting the combined effort behind this advance in quantum computing.


Share this story

Read Original at Science Daily

Related Articles

Science Dailyabout 5 hours ago
“Celtic curse” hotspots found in Scotland and Ireland with 1 in 54 at risk

Researchers have mapped the genetic risk of hemochromatosis across the UK and Ireland for the first time, uncovering striking hotspots in north-west Ireland and the Outer Hebrides. In some regions, around one in 60 people carry the high-risk gene variant linked to iron overload. The condition can take decades to surface but may lead to liver cancer and arthritis if untreated.

Science Dailyabout 6 hours ago
Scientists discover why high altitude protects against diabetes

Living at high altitude appears to protect against diabetes, and scientists have finally discovered the reason. When oxygen levels drop, red blood cells switch into a new metabolic mode and absorb large amounts of glucose from the blood. This helps the body cope with thin air while also reducing blood sugar levels. A drug that recreates this effect reversed diabetes in mice, hinting at a powerful new treatment strategy.

Science Dailyabout 6 hours ago
Ultramarathons may damage red blood cells and accelerate aging

Running extreme distances may strain more than just muscles and joints. New research suggests ultramarathons can alter red blood cells in ways that make them less flexible and more prone to breakdown, potentially interfering with how they deliver oxygen throughout the body. Scientists found signs of both mechanical stress from intense blood flow and molecular damage linked to inflammation and oxidative stress.

Science Dailyabout 7 hours ago
Scientists may have found the holy grail of quantum computing

Scientists may have spotted a long-sought triplet superconductor — a material that can transmit both electricity and electron spin with zero resistance. That ability could dramatically stabilize quantum computers while slashing their energy use. Early experiments suggest the alloy NbRe behaves unlike any conventional superconductor. If verified, it could become a cornerstone of next-generation quantum and spintronic technology.

Science Dailyabout 8 hours ago
Generative AI analyzes medical data faster than human research teams

Researchers tested whether generative AI could handle complex medical datasets as well as human experts. In some cases, the AI matched or outperformed teams that had spent months building prediction models. By generating usable analytical code from precise prompts, the systems dramatically reduced the time needed to process health data. The findings hint at a future where AI helps scientists move faster from data to discovery.

Science Dailyabout 12 hours ago
James Webb Space Telescope captures strange magnetic forces warping Uranus

For the first time, scientists have mapped Uranus’s upper atmosphere in three dimensions, tracking temperatures and charged particles up to 5,000 kilometers above the clouds. Webb’s sharp vision revealed glowing auroral bands and unexpected dark regions shaped by the planet’s wildly tilted magnetic field.