Nature News · Feb 11, 2026 · Collected from RSS
Kroger, L. A. & Reich, C. W. Features of the low-energy level scheme of 229Th as observed in the α-decay of 233U. Nucl. Phys. A 259, 29–60 (1976).Article ADS Google Scholar Beck, B. R. et al. Energy splitting of the ground-state doublet in the nucleus 229Th. Phys. Rev. Lett. 98, 142501 (2007).Article ADS CAS PubMed Google Scholar Seiferle, B. et al. Energy of the 229Th nuclear clock transition. Nature 573, 243–246 (2019).Article ADS CAS PubMed Google Scholar Masuda, T. et al. X-ray pumping of the 229Th nuclear clock isomer. Nature 573, 238–242 (2019).Article ADS CAS PubMed Google Scholar Sikorsky, T. et al. Measurement of the 229Th isomer energy with a magnetic microcalorimeter. Phys. Rev. Lett. 125, 142503 (2020).Article ADS CAS PubMed Google Scholar Kraemer, S. et al. Observation of the radiative decay of the 229Th nuclear clock isomer. Nature 617, 706–710 (2023).Article ADS CAS PubMed Google Scholar Peik, E. & Tamm, C. Nuclear laser spectroscopy of the 3.5 eV transition in Th-229. Europhys. Lett. 61, 181 (2003).Article ADS CAS Google Scholar Campbell, C. J. et al. Single-ion nuclear clock for metrology at the 19th decimal place. Phys. Rev. Lett. 108, 120802 (2012).Article ADS CAS PubMed Google Scholar Rellergert, W. G. et al. Constraining the evolution of the fundamental constants with a solid-state optical frequency reference based on the 229Th nucleus. Phys. Rev. Lett. 104, 200802 (2010).Article ADS PubMed Google Scholar Kazakov, G. A. et al. Performance of a 229Thorium solid-state nuclear clock. New J. Phys. 14, 083019 (2012).Article ADS Google Scholar Beeks, K. et al. Growth and characterization of thorium-doped calcium fluoride single crystals. Sci. Rep. 13, 3897 (2023).Article ADS CAS PubMed PubMed Central Google Scholar Jeet, J. Search for the Low Lying Transition in the 229Th Nucleus. Dissertation, Univ. California, Los Angeles (2018).Thielking, J. et al. Vacuum-ultraviolet laser source for spectroscopy of trapped thorium ions. New J. Phys. 25, 083026 (2023).Article ADS CAS Google Scholar Zhang, C. et al. Tunable VUV frequency comb for 229mTh nuclear spectroscopy. Opt. Lett. 47, 5591–5594 (2022).Article ADS CAS PubMed Google Scholar Tiedau, J. et al. Laser excitation of the Th-229 nucleus. Phys. Rev. Lett. 132, 182501 (2024).Article ADS CAS PubMed Google Scholar Elwell, R. et al. Laser excitation of the 229Th nuclear isomeric transition in a solid-state host. Phys. Rev. Lett. 133, 013201 (2024).Article ADS CAS PubMed Google Scholar Zhang, C. et al. Frequency ratio of the 229mTh nuclear isomeric transition and the 87Sr atomic clock. Nature 633, 63–70 (2024).Article ADS CAS PubMed Google Scholar Beeks, K. et al. The thorium-229 low-energy isomer and the nuclear clock. Nat. Rev. Phys. 3, 238–248 (2021).Article CAS Google Scholar Hodgson, R. T., Sorokin, P. P. & Wynne, J. J. Tunable coherent vacuum-ultraviolet generation in atomic vapors. Phys. Rev. Lett. 32, 343–346 (1974).Article ADS CAS Google Scholar Scholz, M. et al. 1.3-mW tunable and narrow-band continuous-wave light source at 191 nm. Opt. Express 20, 18659–18664 (2012).Article ADS PubMed Google Scholar Schmidt, P. O. et al. Spectroscopy using quantum logic. Science 309, 749–752 (2005).Article ADS CAS PubMed Google Scholar Marshall, M. C. et al. High-stability single-ion clock with 5.5 × 10−19 systematic uncertainty. Phys. Rev. Lett. 135, 033201 (2025).Article ADS CAS PubMed Google Scholar Schmidt-Kaler, F. et al. Rydberg excitation of trapped cold ions: a detailed case study. New J. Phys. 13, 075014 (2011).Article ADS Google Scholar Zhang, C. et al. Submicrosecond entangling gate between trapped ions via Rydberg interaction. Nature 580, 345–349 (2020).Article ADS CAS PubMed Google Scholar Zhou, X. et al. New developments in laser-based photoemission spectroscopy and its scientific applications: a key issues review. Rep. Prog. Phys. 81, 062101 (2018).Article ADS MathSciNet PubMed Google Scholar Kostko, O., Bandyopadhyay, B. & Ahmed, M. Vacuum ultraviolet photoionization of complex chemical systems. Annu. Rev. Phys. Chem. 67, 19–40 (2016).Article ADS CAS PubMed Google Scholar Flambaum, V. V. Enhanced effect of temporal variation of the fine structure constant and the strong interaction in 229Th. Phys. Rev. Lett. 97, 092502 (2006).Article ADS CAS PubMed Google Scholar Fuchs, E. et al. Searching for dark matter with the 229Th nuclear lineshape from laser spectroscopy. Phys. Rev. X 15, 021055 (2025).CAS Google Scholar Zhang, C. et al. 229ThF4 thin films for solid-state nuclear clocks. Nature 636, 603–608 (2024).Article ADS CAS PubMed Google Scholar Higgins, J. S. et al. Temperature sensitivity of a thorium-229 solid-state nuclear clock. Phys. Rev. Lett. 134, 113801 (2025).Article ADS CAS PubMed Google Scholar Terhune, J. E. S. et al. Photo-induced quenching of the 229Th isomer in a solid-state host. Phys. Rev. Res. 7, L022062 (2025).Article CAS Google Scholar Schaden, F. et al. Laser-induced quenching of the Th-229 nuclear clock isomer in calcium fluoride. Phys. Rev. Res. 7, L022036 (2025).Article CAS Google Scholar Campbell, C. J., Radnaev, A. G. & Kuzmich, A. Wigner crystals of 229Th for optical excitation of the nuclear isomer. Phys. Rev. Lett. 106, 223001 (2011).Article ADS CAS PubMed Google Scholar Thielking, J. et al. Laser spectroscopic characterization of the nuclear-clock isomer 229mTh. Nature 556, 321–325 (2018).Article ADS CAS PubMed Google Scholar Scharl, K. et al. Setup for the ionic lifetime measurement of the 229mTh3+ nuclear clock isomer. Atoms 11, 108 (2023).Article ADS CAS Google Scholar Zitzer, G. et al. Sympathetic cooling of trapped Th3+ alpha-recoil ions for laser spectroscopy. Phys. Rev. A 109, 033116 (2024).Article ADS CAS Google Scholar Yamaguchi, A. et al. Laser spectroscopy of triply charged 229Th isomer for a nuclear clock. Nature 629, 62–66 (2024).Article ADS CAS PubMed Google Scholar Leibfried, D., Blatt, R., Monroe, C. & Wineland, D. Quantum dynamics of single trapped ions. Rev. Mod. Phys. 75, 281 (2003).Article ADS CAS Google Scholar Thirolf, P. Shedding light on the thorium-229 nuclear clock isomer. Physics 17, 71 (2024).Article Google Scholar Mutailipu, M. & Pan, S. Emergent deep-ultraviolet nonlinear optical candidates. Angew. Chem. Int. Ed. 59, 20302–20317 (2020).Article CAS Google Scholar VÃllora, E. G., Shimamura, K., Sumiya, K. & Ishibashi, H. Birefringent- and quasi phase-matching with BaMgF4 for vacuum-UV/UV and mid-IR all solid-state lasers. Opt. Express 17, 12362–12378 (2009).Article ADS PubMed Google Scholar Yakar, O., Nitiss, E., Hu, J. & Brès, C.-S. Integrated backward second-harmonic generation through optically induced quasi-phase-matching. Phys. Rev. Lett. 131, 143802 (2023).Article ADS CAS PubMed Google Scholar Eikema, K. S. E., Walz, J. & Hänsch, T. W. Continuous wave coherent Lyman-α radiation. Phys. Rev. Lett. 83, 3828 (1999).Article ADS CAS Google Scholar Kolbe, D., Scheid, M. & Walz, J. Triple resonant four-wave mixing boosts the yield of continuous coherent vacuum ultraviolet generation. Phys. Rev. Lett. 109, 063901 (2012).Article ADS PubMed Google Scholar Pahl, A. et al. Generation of continuous coherent radiation at Lyman-α and 1S-2P spectroscopy of atomic hydrogen. Laser Phys. 15, 46–54 (2005).CAS Google Scholar Xiao, Q. et al. Proposal for the generation of continuous-wave vacuum ultraviolet laser light for Th-229 isomer precision spectroscopy. Preprint at https://arxiv.org/abs/2406.16841 (2024).Benko, C. et al. Extreme ultraviolet radiation with coherence time greater than 1 s. Nat. Photon. 8, 530–536 (2014).Article ADS CAS Google Scholar Penyazkov, G., Yu, Y., Skripnikov, L. V. & Ding, S. Theoretical study of transition matrix elements in cadmium for vacuum-ultraviolet generation in 229Th nuclear clock applications. Phys. Rev. A 112, 022807 (2025).Article ADS CAS Google Scholar Wang, J. et al. A new instrument of VUV laser desorption/ionization mass spectrometry imaging with micrometer spatial resolution and low level of molecular fragmentation. Rev. Sci. Instrum. 88, 114102 (2017).Vidal, C. R. in Tunable Lasers (eds Mollenauer, L. F., White, J. C. & Pollock, C. R.) Ch. 3 (Springer, 2005).Tian, H. et al. Frequency-shifted f-2f interferometer for unveiling the noise performance of carrier-envelope offset in passively stabilized frequency combs. Appl. Phys. Lett. 125, 241107 (2024).Article ADS CAS Google Scholar Bodine, M. I. et al. Optical atomic clock comparison through turbulent air. Phys. Rev. Res. 2, 033395 (2020).Article CAS Google Scholar von der Wense, L. et al. The theory of direct laser excitation of nuclear transitions. Eur. Phys. J. A 56, 176 (2020).Article ADS Google Scholar Hiraki, T. et al. Controlling 229Th isomeric state population in a VUV transparent crystal. Nat. Commun. 15, 5536 (2024).Article ADS CAS PubMed PubMed Central Google Scholar Matei, D. G. et al. 1.5 μm lasers with sub-10 mHz linewidth. Phys. Rev. Lett. 118, 263202 (2017).Article ADS CAS PubMed Google Scholar Lal, V. et al. Continuous-wave laser source at the 148 nm nuclear transition of Th-229. Optica 12, 1971–1974 (2025).Article ADS Google Scholar Wu, L. et al. 0.26-Hz-linewidth ultrastable lasers at 1557 nm. Sci. Rep. 6, 24969 (2016).Article ADS CAS PubMed PubMed Central Google Scholar Fienup, J. R. Phase retrieval algorithms: a comparison. Appl. Opt. 21, 2758–2769 (1982).Article ADS CAS PubMed Google Scholar Riley, D. S. & Karam, S. L. The Allan variance and its applications to frequency stability measurements. Proc. IEEE 82, 1250–1259 (1994). Google Scholar Riley, W. J. Handbook of frequency stability analysis. National Institute of Standards and Technology https://www.nist.gov/publications/handbook-frequency-stability-analysis (2008).Makdissi, A., Vernotte, F. & De Clercq, E. Stability variances: a filter approach. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 57, 1011–1028 (2010).Article ADS PubMed Google Scholar Mandel, L. & Wolf, E. Optical Coherence and Quantum Optics (Cambridge Univ. Press, 1995