Nature News · Feb 11, 2026 · Collected from RSS
Data availabilityCryo-EM density maps have been deposited into the Electron Microscopy Data Bank (EMDB) under accession codes EMD-64285 (GluN1–GluN2A(S1)), EMD-64284 (GluN1–GluN2A-S1 TMD), EMD-64353 (GluN1–GluN2A(S1) composite), EMD-64289 (GluN1–GluN2A(S2)), EMD-64290 (GluN1–GluN2A(S2) TMD), EMD-64356 (GluN1–GluN2A(S2) composite), EMD-64292 (GluN1–GluN2A(S3)), EMD-64294 (GluN1–GluN2A(S3) TMD), EMD-64357 (GluN1–GluN2A(S3) composite), EMD-64279 (GluN1–GluN2A–GluN2B(S1)), EMD-64280 (GluN1–GluN2A–GluN2B(S1) TMD), EMD-64361 (GluN1–GluN2A–GluN2B(S1) composite), EMD-64281 (GluN1–GluN2A–GluN2B(S2)), EMD-64283 (GluN1–GluN2A–GluN2B(S2) TMD), EMD-64359 (GluN1–GluN2A–GluN2B(S2) composite), EMD-64295 (GluN1–GluN2B), EMD-64296 (GluN1–GluN2B TMD), EMD-64354 (GluN1–GluN2B composite), EMD-64300 (GluN1–GluN2A–GluNX(S1)), EMD-64301 (GluN1–GluN2A–GluNX(S1) TMD), EMD-64302 (GluN1–GluN2A–GluNX(S1) composite), EMD-64303 (GluN1–GluN2A–GluNX(S2)), EMD-64304 (GluN1–GluN2A–GluNX(S2) TMD), EMD-64305 (GluN1–GluN2A–GluNX(S2) composite), EMD-64297 (GluN1–GluN2B–GluNX), EMD-64298 (GluN1–GluN2B–GluNX TMD), EMD-64299 (GluN1–GluN2B–GluNX composite), EMD-64300 (GluN1–GluNX), EMD-64301 (GluN1–GluNX TMD), EMD-64302 (GluN1–GluNX composite), EMD-64311 (Q-GluN1–GluN2A), EMD-64318 (Q-GluN1–GluN2A TMD), EMD-64358 (Q-GluN1–GluN2A composite), EMD-64313 (Q-GluN1–GluN2A–GluN2B), EMD-64314 (Q-GluN1–GluN2A–GluN2B TMD), EMD-64360 (Q-GluN1–GluN2A–GluN2B composite), EMD-64277 (Q-GluN1–GluN2B open), EMD-64278 (Q-GluN1–GluN2B open TMD), EMD-64338 (Q-GluN1–GluN2B open, composite), EMD-64310 (Q-GluN1–GluN2B inactive), EMD-64309 (Q-GluN1–GluN2B inactive, TMD), EMD-64337 (Q-GluN1–GluN2B inactive, composite), EMD-64326 (Q-GluN1–GluN2A/NX), EMD-64327 (Q-GluN1–GluN2A–GluNX TMD), EMD-64328 (Q-GluN1–GluN2A–GluNX composite), EMD-64315 (Q-GluN1–GluN2B–GluNX open), EMD-64316 (Q-GluN1–GluN2B–GluNX open, TMD), EMD-64317 (Q-GluN1–GluN2B–GluNX open, composite), EMD-64319 (Q-GluN1–GluN2B–GluNX inactive), EMD-64320 (Q-GluN1–GluN2B–GluNX inactive, TMD), EMD-64321 (Q-GluN1–GluN2B–GluNX inactive, composite), EMD-64330 (Q-GluN1–GluNX), EMD-64331 (Q-GluN1–GluNX TMD) and EMD-64332 (Q-GluN1–GluNX composite). The structural coordinates have been deposited into the PDB under accession codes 9UNJ (GluN1–GluN2A(S1)), 9UNM (GluN1–GluN2A(S2)), 9UNN (GluN1–GluN2A(S3)), 9UNR (GluN1–GluN2A–GluN2B(S1)), 9UNP (GluN1–GluN2A–GluN2B(S2)), 9UNK (GluN1–GluN2B inactive), 9UNO (Q-GluN1–GluN2A), 9UNQ (Q-GluN1–GluN2A–GluN2B), 9UN3 (Q-GluN1–GluN2B open) and 9UN2 (Q-GluN1–GluN2B inactive). The MS data generated in this study have been deposited in a publicly accessible repository at Integrated Proteome Resources (https://www.iprox.cn/page/SSV024.html;url=17614553687531n9I; code: gJEQ). The raw microscopy images related to SiMPull experiments are publicly available in the BioImage Archive under accession number: S-BIAD2493. Source data are provided with this paper.Code availability Custom ImageJ (Fiji) macros used for automated particle detection and colocalization analyses based on regions of interest are publicly available at GitHub (https://github.com/RiaXiangzi/Colocalization_ImageJ) and archived in Zenodo (https://doi.org/10.5281/zenodo.17922313)49. ReferencesTraynelis, S. F. et al. Glutamate receptor ion channels: structure, regulation, and function. Pharmacol. Rev. 62, 405–496 (2010).Article CAS PubMed PubMed Central Google Scholar Lee, C. H. et al. NMDA receptor structures reveal subunit arrangement and pore architecture. Nature 511, 191–197 (2014).Article ADS CAS PubMed PubMed Central Google Scholar Zhang, M. et al. Assembly and architecture of endogenous NMDA receptors in adult cerebral cortex and hippocampus. Cell 188, 1198–1207 (2025).Article CAS PubMed Google Scholar Paoletti, P., Bellone, C. & Zhou, Q. NMDA receptor subunit diversity: impact on receptor properties, synaptic plasticity and disease. Nat. Rev. Neurosci. 14, 383–400 (2013).Article CAS PubMed Google Scholar Balu, D. T. The NMDA receptor and schizophrenia: from pathophysiology to treatment. Adv. Pharmacol. 76, 351–382 (2016).Article CAS PubMed PubMed Central Google Scholar McKeage, K. Memantine: a review of its use in moderate to severe Alzheimer’s disease. CNS Drugs 23, 881–897 (2009).Article CAS PubMed Google Scholar Paoletti, P. Molecular basis of NMDA receptor functional diversity. Eur. J. Neurosci. 33, 1351–1365 (2011).Article PubMed Google Scholar Rauner, C. & Kohr, G. Triheteromeric NR1/NR2A/NR2B receptors constitute the major N-methyl-d-aspartate receptor population in adult hippocampal synapses. J. Biol. Chem. 286, 7558–7566 (2011).Article CAS PubMed Google Scholar Wyllie, D. J., Livesey, M. R. & Hardingham, G. E. Influence of GluN2 subunit identity on NMDA receptor function. Neuropharmacology 74, 4–17 (2013).Article CAS PubMed PubMed Central Google Scholar Vicini, S. et al. Functional and pharmacological differences between recombinant N-methyl-d-aspartate receptors. J. Neurophysiol. 79, 555–566 (1998).Article CAS PubMed Google Scholar Erreger, K., Dravid, S. M., Banke, T. G., Wyllie, D. J. & Traynelis, S. F. Subunit-specific gating controls rat NR1/NR2A and NR1/NR2B NMDA channel kinetics and synaptic signalling profiles. J. Physiol. 563, 345–358 (2005).Article CAS PubMed PubMed Central Google Scholar Gielen, M., Siegler Retchless, B., Mony, L., Johnson, J. W. & Paoletti, P. Mechanism of differential control of NMDA receptor activity by NR2 subunits. Nature 459, 703–707 (2009).Article ADS CAS PubMed PubMed Central Google Scholar Yuan, H., Hansen, K. B., Vance, K. M., Ogden, K. K. & Traynelis, S. F. Control of NMDA receptor function by the NR2 subunit amino-terminal domain. J. Neurosci. 29, 12045–12058 (2009).Article CAS PubMed PubMed Central Google Scholar Gielen, M. et al. Structural rearrangements of NR1/NR2A NMDA receptors during allosteric inhibition. Neuron 57, 80–93 (2008).Article CAS PubMed PubMed Central Google Scholar Jalali-Yazdi, F., Chowdhury, S., Yoshioka, C. & Gouaux, E. Mechanisms for zinc and proton inhibition of the GluN1/GluN2A NMDA receptor. Cell 175, 1520–1532 (2018).Article CAS PubMed PubMed Central Google Scholar Zhu, S. & Gouaux, E. Structure and symmetry inform gating principles of ionotropic glutamate receptors. Neuropharmacology 112, 11–15 (2017).Article CAS PubMed Google Scholar Chou, T. H. et al. Molecular mechanism of ligand gating and opening of NMDA receptor. Nature 632, 209–217 (2024).Article ADS CAS PubMed PubMed Central Google Scholar Goehring, A. et al. Screening and large-scale expression of membrane proteins in mammalian cells for structural studies. Nat. Protoc. 9, 2574–2585 (2014).Article CAS PubMed PubMed Central Google Scholar Gladding, C. M. & Raymond, L. A. Mechanisms underlying NMDA receptor synaptic/extrasynaptic distribution and function. Mol. Cell. Neurosci. 48, 308–320 (2011).Article CAS PubMed Google Scholar Hardingham, G. E. & Bading, H. Synaptic versus extrasynaptic NMDA receptor signalling: implications for neurodegenerative disorders. Nat. Rev. Neurosci. 11, 682–696 (2010).Article CAS PubMed PubMed Central Google Scholar Laurie, D. J. & Seeburg, P. H. Regional and developmental heterogeneity in splicing of the rat brain NMDAR1 mRNA. J. Neurosci. 14, 3180–3194 (1994).Article CAS PubMed PubMed Central Google Scholar Monyer, H., Burnashev, N., Laurie, D. J., Sakmann, B. & Seeburg, P. H. Developmental and regional expression in the rat brain and functional properties of four NMDA receptors. Neuron 12, 529–540 (1994).Article CAS PubMed Google Scholar Huang, X. et al. Structural insights into the diverse actions of magnesium on NMDA receptors. Neuron 113, 1006–1018 (2025).Article CAS PubMed Google Scholar Cornelison, G. L. & Mihic, S. J. Contaminating levels of zinc found in commonly-used labware and buffers affect glycine receptor currents. Brain Res. Bull. 100, 1–5 (2014).Article CAS PubMed Google Scholar Low, C. M., Zheng, F., Lyuboslavsky, P. & Traynelis, S. F. Molecular determinants of coordinated proton and zinc inhibition of N-methyl-d-aspartate NR1/NR2A receptors. Proc. Natl Acad. Sci. USA 97, 11062–11067 (2000).Article ADS CAS PubMed PubMed Central Google Scholar Paoletti, P., Ascher, P. & Neyton, J. High-affinity zinc inhibition of NMDA NR1–NR2A receptors. J. Neurosci. 17, 5711–5725 (1997).Article CAS PubMed PubMed Central Google Scholar Zhang, Y. et al. Structural basis of ketamine action on human NMDA receptors. Nature 596, 301–305 (2021).Article ADS CAS PubMed Google Scholar Zorumski, C. F., Izumi, Y. & Mennerick, S. Ketamine: NMDA receptors and beyond. J. Neurosci. 36, 11158–11164 (2016).Article CAS PubMed PubMed Central Google Scholar Zhang, J. et al. Distinct structure and gating mechanism in diverse NMDA receptors with GluN2C and GluN2D subunits. Nat. Struct. Mol. Biol. 30, 629–639 (2023).Article CAS PubMed Google Scholar Esmenjaud, J. B. et al. An inter-dimer allosteric switch controls NMDA receptor activity. EMBO J. https://doi.org/10.15252/embj.201899894 (2019).Lu, W., Du, J., Goehring, A. & Gouaux, E. Cryo-EM structures of the triheteromeric NMDA receptor and its allosteric modulation. Science https://doi.org/10.1126/science.aal3729 (2017).Stafford, B. K., Manookin, M. B., Singer, J. H. & Demb, J. B. NMDA and AMPA receptors contribute similarly to temporal processing in mammalian retinal ganglion cells. J. Physiol. 592, 4877–4889 (2014).Article CAS PubMed PubMed Central Google Scholar Hansen, K. B., Ogden, K. K., Yuan, H. & Traynelis, S. F. Distinct functional and pharmacological properties of triheteromeric GluN1/GluN2A/GluN2B NMDA receptors. Neuron 81, 1084–1096 (2014).Article CAS PubMed PubMed Central Google Scholar Jones, K. S., VanDongen, H. M. & VanDongen, A. M. The NMDA receptor M3 segment is a conserved transduction element coupling ligand binding to channel opening. J. Neurosci. 22, 2044–2053 (2002).Article CAS PubMed PubMed Central Google Scholar Yu, J. et al. Mechanism of gating and partial agonist action in the glycine receptor. Cell 184, 957–968